MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmsucr Structured version   Visualization version   GIF version

Theorem nnmsucr 7569
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6535 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 𝐵))
2 oveq2 6535 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐵))
3 id 22 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 6545 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))
51, 4eqeq12d 2624 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵)))
65imbi2d 328 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))))
7 oveq2 6535 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 ∅))
8 oveq2 6535 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
9 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 6545 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 ∅) +𝑜 ∅))
117, 10eqeq12d 2624 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 ∅) = ((𝐴 ·𝑜 ∅) +𝑜 ∅)))
12 oveq2 6535 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 𝑦))
13 oveq2 6535 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
14 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 6545 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦))
1612, 15eqeq12d 2624 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦)))
17 oveq2 6535 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 suc 𝑦))
18 oveq2 6535 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
19 id 22 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 6545 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦))
2117, 20eqeq12d 2624 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦)))
22 peano2 6955 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 7549 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ∅)
2422, 23syl 17 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ∅)
25 nnm0 7549 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
2624, 25eqtr4d 2646 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = (𝐴 ·𝑜 ∅))
27 peano1 6954 . . . . . . 7 ∅ ∈ ω
28 nnmcl 7556 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·𝑜 ∅) ∈ ω)
2927, 28mpan2 702 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) ∈ ω)
30 nna0 7548 . . . . . 6 ((𝐴 ·𝑜 ∅) ∈ ω → ((𝐴 ·𝑜 ∅) +𝑜 ∅) = (𝐴 ·𝑜 ∅))
3129, 30syl 17 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·𝑜 ∅) +𝑜 ∅) = (𝐴 ·𝑜 ∅))
3226, 31eqtr4d 2646 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ((𝐴 ·𝑜 ∅) +𝑜 ∅))
33 oveq1 6534 . . . . . 6 ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴))
34 peano2b 6950 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 7551 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝑦) = ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴))
3634, 35sylanb 487 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝑦) = ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴))
37 nnmcl 7556 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 𝑦) ∈ ω)
38 peano2b 6950 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 7566 . . . . . . . . . . . 12 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4038, 39syl3an3b 1355 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4137, 40syl3an1 1350 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
42413expb 1257 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4342anidms 674 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
44 nnmsuc 7551 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
4544oveq1d 6542 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦))
46 nnaass 7566 . . . . . . . . . . . . . 14 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
4734, 46syl3an3b 1355 . . . . . . . . . . . . 13 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
4837, 47syl3an1 1350 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
49483expb 1257 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
5049an42s 865 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
5150anidms 674 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
52 nnacom 7561 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴))
53 suceq 5693 . . . . . . . . . . . 12 ((𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
5452, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
55 nnasuc 7550 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
56 nnasuc 7550 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +𝑜 suc 𝐴) = suc (𝑦 +𝑜 𝐴))
5756ancoms 467 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 suc 𝐴) = suc (𝑦 +𝑜 𝐴))
5854, 55, 573eqtr4d 2653 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = (𝑦 +𝑜 suc 𝐴))
5958oveq2d 6543 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
6051, 59eqtr4d 2646 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
6143, 45, 603eqtr4d 2653 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴))
6236, 61eqeq12d 2624 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) ↔ ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴)))
6333, 62syl5ibr 234 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦)))
6463expcom 449 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦))))
6511, 16, 21, 32, 64finds2 6963 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥)))
666, 65vtoclga 3244 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵)))
6766impcom 444 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  c0 3873  suc csuc 5628  (class class class)co 6527  ωcom 6934   +𝑜 coa 7421   ·𝑜 comu 7422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-oadd 7428  df-omul 7429
This theorem is referenced by:  nnmcom  7570
  Copyright terms: Public domain W3C validator