MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nna0r Structured version   Visualization version   GIF version

Theorem nna0r 8221
Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8149) so that we can avoid ax-rep 5176, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nna0r (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)

Proof of Theorem nna0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7150 . . 3 (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2837 . 2 (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅))
4 oveq2 7150 . . 3 (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2837 . 2 (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦))
7 oveq2 7150 . . 3 (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2837 . 2 (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦))
10 oveq2 7150 . . 3 (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2837 . 2 (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴))
13 0elon 6230 . . 3 ∅ ∈ On
14 oa0 8127 . . 3 (∅ ∈ On → (∅ +o ∅) = ∅)
1513, 14ax-mp 5 . 2 (∅ +o ∅) = ∅
16 peano1 7587 . . . 4 ∅ ∈ ω
17 nnasuc 8218 . . . 4 ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
1816, 17mpan 688 . . 3 (𝑦 ∈ ω → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
19 suceq 6242 . . . 4 ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦)
2019eqeq2d 2832 . . 3 ((∅ +o 𝑦) = 𝑦 → ((∅ +o suc 𝑦) = suc (∅ +o 𝑦) ↔ (∅ +o suc 𝑦) = suc 𝑦))
2118, 20syl5ibcom 247 . 2 (𝑦 ∈ ω → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦))
223, 6, 9, 12, 15, 21finds 7594 1 (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  c0 4279  Oncon0 6177  suc csuc 6179  (class class class)co 7142  ωcom 7566   +o coa 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-oadd 8092
This theorem is referenced by:  nnacom  8229  nnm1  8261
  Copyright terms: Public domain W3C validator