MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nna0r Structured version   Visualization version   GIF version

Theorem nna0r 7860
Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 7789) so that we can avoid ax-rep 4923, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nna0r (𝐴 ∈ ω → (∅ +𝑜 𝐴) = 𝐴)

Proof of Theorem nna0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6822 . . 3 (𝑥 = ∅ → (∅ +𝑜 𝑥) = (∅ +𝑜 ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2775 . 2 (𝑥 = ∅ → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 ∅) = ∅))
4 oveq2 6822 . . 3 (𝑥 = 𝑦 → (∅ +𝑜 𝑥) = (∅ +𝑜 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2775 . 2 (𝑥 = 𝑦 → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 𝑦) = 𝑦))
7 oveq2 6822 . . 3 (𝑥 = suc 𝑦 → (∅ +𝑜 𝑥) = (∅ +𝑜 suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2775 . 2 (𝑥 = suc 𝑦 → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 suc 𝑦) = suc 𝑦))
10 oveq2 6822 . . 3 (𝑥 = 𝐴 → (∅ +𝑜 𝑥) = (∅ +𝑜 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2775 . 2 (𝑥 = 𝐴 → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 𝐴) = 𝐴))
13 0elon 5939 . . 3 ∅ ∈ On
14 oa0 7767 . . 3 (∅ ∈ On → (∅ +𝑜 ∅) = ∅)
1513, 14ax-mp 5 . 2 (∅ +𝑜 ∅) = ∅
16 peano1 7251 . . . 4 ∅ ∈ ω
17 nnasuc 7857 . . . 4 ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ +𝑜 suc 𝑦) = suc (∅ +𝑜 𝑦))
1816, 17mpan 708 . . 3 (𝑦 ∈ ω → (∅ +𝑜 suc 𝑦) = suc (∅ +𝑜 𝑦))
19 suceq 5951 . . . 4 ((∅ +𝑜 𝑦) = 𝑦 → suc (∅ +𝑜 𝑦) = suc 𝑦)
2019eqeq2d 2770 . . 3 ((∅ +𝑜 𝑦) = 𝑦 → ((∅ +𝑜 suc 𝑦) = suc (∅ +𝑜 𝑦) ↔ (∅ +𝑜 suc 𝑦) = suc 𝑦))
2118, 20syl5ibcom 235 . 2 (𝑦 ∈ ω → ((∅ +𝑜 𝑦) = 𝑦 → (∅ +𝑜 suc 𝑦) = suc 𝑦))
223, 6, 9, 12, 15, 21finds 7258 1 (𝐴 ∈ ω → (∅ +𝑜 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  c0 4058  Oncon0 5884  suc csuc 5886  (class class class)co 6814  ωcom 7231   +𝑜 coa 7727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-oadd 7734
This theorem is referenced by:  nnacom  7868  nnm1  7899
  Copyright terms: Public domain W3C validator