![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elon | Structured version Visualization version GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 5815 | . 2 ⊢ Ord ∅ | |
2 | 0ex 4823 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 5770 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 221 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ∅c0 3948 Ord word 5760 Oncon0 5761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-nul 3949 df-pw 4193 df-uni 4469 df-tr 4786 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 |
This theorem is referenced by: inton 5820 onn0 5827 on0eqel 5883 orduninsuc 7085 onzsl 7088 smofvon2 7498 tfrlem16 7534 1on 7612 ordgt0ge1 7622 oa0 7641 om0 7642 oe0m 7643 oe0m0 7645 oe0 7647 oesuclem 7650 omcl 7661 oecl 7662 oa0r 7663 om0r 7664 oaord1 7676 oaword1 7677 oaword2 7678 oawordeu 7680 oa00 7684 odi 7704 oeoa 7722 oeoe 7724 nna0r 7734 nnm0r 7735 card2on 8500 card2inf 8501 harcl 8507 cantnfvalf 8600 rankon 8696 cardon 8808 card0 8822 alephon 8930 alephgeom 8943 alephfplem1 8965 cdafi 9050 ttukeylem4 9372 ttukeylem7 9375 cfpwsdom 9444 inar1 9635 rankcf 9637 gruina 9678 bnj168 30924 rdgprc0 31823 sltval2 31934 sltsolem1 31951 nosepnelem 31955 nodense 31967 nolt02o 31970 bdayelon 32017 rankeq1o 32403 0hf 32409 onsucconn 32562 onsucsuccmp 32568 finxp1o 33359 finxpreclem4 33361 harn0 37989 |
Copyright terms: Public domain | W3C validator |