Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numaddc Structured version   Visualization version   GIF version

 Description: Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numaddc.9 ((𝐴 + 𝐶) + 1) = 𝐸
numaddc.10 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
Assertion
Ref Expression
numaddc (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

StepHypRef Expression
1 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
2 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
3 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
4 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
52, 3, 4numcl 11702 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2835 . . . . 5 𝑀 ∈ ℕ0
76nn0cni 11496 . . . 4 𝑀 ∈ ℂ
87mulid1i 10234 . . 3 (𝑀 · 1) = 𝑀
98oveq1i 6823 . 2 ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁)
10 numma.4 . . 3 𝐶 ∈ ℕ0
11 numma.5 . . 3 𝐷 ∈ ℕ0
12 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
13 1nn0 11500 . . 3 1 ∈ ℕ0
14 numaddc.8 . . 3 𝐹 ∈ ℕ0
153nn0cni 11496 . . . . . 6 𝐴 ∈ ℂ
1615mulid1i 10234 . . . . 5 (𝐴 · 1) = 𝐴
1716oveq1i 6823 . . . 4 ((𝐴 · 1) + (𝐶 + 1)) = (𝐴 + (𝐶 + 1))
1810nn0cni 11496 . . . . 5 𝐶 ∈ ℂ
19 ax-1cn 10186 . . . . 5 1 ∈ ℂ
2015, 18, 19addassi 10240 . . . 4 ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1))
21 numaddc.9 . . . 4 ((𝐴 + 𝐶) + 1) = 𝐸
2217, 20, 213eqtr2i 2788 . . 3 ((𝐴 · 1) + (𝐶 + 1)) = 𝐸
234nn0cni 11496 . . . . . 6 𝐵 ∈ ℂ
2423mulid1i 10234 . . . . 5 (𝐵 · 1) = 𝐵
2524oveq1i 6823 . . . 4 ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷)
26 numaddc.10 . . . 4 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
2725, 26eqtri 2782 . . 3 ((𝐵 · 1) + 𝐷) = ((𝑇 · 1) + 𝐹)
282, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27nummac 11750 . 2 ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
299, 28eqtr3i 2784 1 (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1632   ∈ wcel 2139  (class class class)co 6813  1c1 10129   + caddc 10131   · cmul 10133  ℕ0cn0 11484 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-ltxr 10271  df-sub 10460  df-nn 11213  df-n0 11485 This theorem is referenced by:  decaddc  11764  decaddcOLD  11765
 Copyright terms: Public domain W3C validator