Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw3 Structured version   Visualization version   GIF version

Theorem omllaw3 33353
Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 27485 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw3.b 𝐵 = (Base‘𝐾)
omllaw3.l = (le‘𝐾)
omllaw3.m = (meet‘𝐾)
omllaw3.o = (oc‘𝐾)
omllaw3.z 0 = (0.‘𝐾)
Assertion
Ref Expression
omllaw3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = 𝑌))

Proof of Theorem omllaw3
StepHypRef Expression
1 oveq2 6535 . . . . . 6 ((𝑌 ( 𝑋)) = 0 → (𝑋(join‘𝐾)(𝑌 ( 𝑋))) = (𝑋(join‘𝐾) 0 ))
21adantl 480 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → (𝑋(join‘𝐾)(𝑌 ( 𝑋))) = (𝑋(join‘𝐾) 0 ))
3 omlol 33348 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OL)
4 omllaw3.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
5 eqid 2609 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
6 omllaw3.z . . . . . . . . 9 0 = (0.‘𝐾)
74, 5, 6olj01 33333 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
83, 7sylan 486 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
983adant3 1073 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
109adantr 479 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → (𝑋(join‘𝐾) 0 ) = 𝑋)
112, 10eqtr2d 2644 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1211adantrl 747 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
13 omllaw3.l . . . . . 6 = (le‘𝐾)
14 omllaw3.m . . . . . 6 = (meet‘𝐾)
15 omllaw3.o . . . . . 6 = (oc‘𝐾)
164, 13, 5, 14, 15omllaw 33351 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋)))))
1716imp 443 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1817adantrr 748 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1912, 18eqtr4d 2646 . 2 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑋 = 𝑌)
2019ex 448 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  Basecbs 15641  lecple 15721  occoc 15722  joincjn 16713  meetcmee 16714  0.cp0 16806  OLcol 33282  OMLcoml 33283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-preset 16697  df-poset 16715  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-lat 16815  df-oposet 33284  df-ol 33286  df-oml 33287
This theorem is referenced by:  omlfh1N  33366  atlatmstc  33427
  Copyright terms: Public domain W3C validator