MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnseq Structured version   Visualization version   GIF version

Theorem onnseq 7983
Description: There are no length ω decreasing sequences in the ordinals. See also noinfep 9125 for a stronger version assuming Regularity. (Contributed by Mario Carneiro, 19-May-2015.)
Assertion
Ref Expression
onnseq ((𝐹‘∅) ∈ On → ∃𝑥 ∈ ω ¬ (𝐹‘suc 𝑥) ∈ (𝐹𝑥))
Distinct variable group:   𝑥,𝐹

Proof of Theorem onnseq
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 7499 . . . . 5 E We On
2 fveq2 6672 . . . . . . . . . . 11 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
32eleq1d 2899 . . . . . . . . . 10 (𝑦 = ∅ → ((𝐹𝑦) ∈ On ↔ (𝐹‘∅) ∈ On))
4 fveq2 6672 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
54eleq1d 2899 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑦) ∈ On ↔ (𝐹𝑧) ∈ On))
6 fveq2 6672 . . . . . . . . . . 11 (𝑦 = suc 𝑧 → (𝐹𝑦) = (𝐹‘suc 𝑧))
76eleq1d 2899 . . . . . . . . . 10 (𝑦 = suc 𝑧 → ((𝐹𝑦) ∈ On ↔ (𝐹‘suc 𝑧) ∈ On))
8 simpl 485 . . . . . . . . . 10 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → (𝐹‘∅) ∈ On)
9 suceq 6258 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
109fveq2d 6676 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑧))
11 fveq2 6672 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1210, 11eleq12d 2909 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹‘suc 𝑥) ∈ (𝐹𝑥) ↔ (𝐹‘suc 𝑧) ∈ (𝐹𝑧)))
1312rspcv 3620 . . . . . . . . . . . 12 (𝑧 ∈ ω → (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥) → (𝐹‘suc 𝑧) ∈ (𝐹𝑧)))
14 onelon 6218 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ On ∧ (𝐹‘suc 𝑧) ∈ (𝐹𝑧)) → (𝐹‘suc 𝑧) ∈ On)
1514expcom 416 . . . . . . . . . . . 12 ((𝐹‘suc 𝑧) ∈ (𝐹𝑧) → ((𝐹𝑧) ∈ On → (𝐹‘suc 𝑧) ∈ On))
1613, 15syl6 35 . . . . . . . . . . 11 (𝑧 ∈ ω → (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥) → ((𝐹𝑧) ∈ On → (𝐹‘suc 𝑧) ∈ On)))
1716adantld 493 . . . . . . . . . 10 (𝑧 ∈ ω → (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ((𝐹𝑧) ∈ On → (𝐹‘suc 𝑧) ∈ On)))
183, 5, 7, 8, 17finds2 7612 . . . . . . . . 9 (𝑦 ∈ ω → (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → (𝐹𝑦) ∈ On))
1918com12 32 . . . . . . . 8 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → (𝑦 ∈ ω → (𝐹𝑦) ∈ On))
2019ralrimiv 3183 . . . . . . 7 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ∀𝑦 ∈ ω (𝐹𝑦) ∈ On)
21 eqid 2823 . . . . . . . 8 (𝑦 ∈ ω ↦ (𝐹𝑦)) = (𝑦 ∈ ω ↦ (𝐹𝑦))
2221fmpt 6876 . . . . . . 7 (∀𝑦 ∈ ω (𝐹𝑦) ∈ On ↔ (𝑦 ∈ ω ↦ (𝐹𝑦)):ω⟶On)
2320, 22sylib 220 . . . . . 6 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → (𝑦 ∈ ω ↦ (𝐹𝑦)):ω⟶On)
2423frnd 6523 . . . . 5 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ⊆ On)
25 peano1 7603 . . . . . . . 8 ∅ ∈ ω
2623fdmd 6525 . . . . . . . 8 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → dom (𝑦 ∈ ω ↦ (𝐹𝑦)) = ω)
2725, 26eleqtrrid 2922 . . . . . . 7 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ∅ ∈ dom (𝑦 ∈ ω ↦ (𝐹𝑦)))
2827ne0d 4303 . . . . . 6 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → dom (𝑦 ∈ ω ↦ (𝐹𝑦)) ≠ ∅)
29 dm0rn0 5797 . . . . . . 7 (dom (𝑦 ∈ ω ↦ (𝐹𝑦)) = ∅ ↔ ran (𝑦 ∈ ω ↦ (𝐹𝑦)) = ∅)
3029necon3bii 3070 . . . . . 6 (dom (𝑦 ∈ ω ↦ (𝐹𝑦)) ≠ ∅ ↔ ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ≠ ∅)
3128, 30sylib 220 . . . . 5 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ≠ ∅)
32 wefrc 5551 . . . . 5 (( E We On ∧ ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ⊆ On ∧ ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ≠ ∅) → ∃𝑧 ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦))(ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ 𝑧) = ∅)
331, 24, 31, 32mp3an2i 1462 . . . 4 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ∃𝑧 ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦))(ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ 𝑧) = ∅)
34 fvex 6685 . . . . . 6 (𝐹𝑤) ∈ V
3534rgenw 3152 . . . . 5 𝑤 ∈ ω (𝐹𝑤) ∈ V
36 fveq2 6672 . . . . . . 7 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
3736cbvmptv 5171 . . . . . 6 (𝑦 ∈ ω ↦ (𝐹𝑦)) = (𝑤 ∈ ω ↦ (𝐹𝑤))
38 ineq2 4185 . . . . . . 7 (𝑧 = (𝐹𝑤) → (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ 𝑧) = (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)))
3938eqeq1d 2825 . . . . . 6 (𝑧 = (𝐹𝑤) → ((ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ 𝑧) = ∅ ↔ (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) = ∅))
4037, 39rexrnmptw 6863 . . . . 5 (∀𝑤 ∈ ω (𝐹𝑤) ∈ V → (∃𝑧 ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦))(ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ 𝑧) = ∅ ↔ ∃𝑤 ∈ ω (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) = ∅))
4135, 40ax-mp 5 . . . 4 (∃𝑧 ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦))(ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ 𝑧) = ∅ ↔ ∃𝑤 ∈ ω (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) = ∅)
4233, 41sylib 220 . . 3 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ∃𝑤 ∈ ω (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) = ∅)
43 peano2 7604 . . . . . . . . 9 (𝑤 ∈ ω → suc 𝑤 ∈ ω)
4443adantl 484 . . . . . . . 8 ((((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) ∧ 𝑤 ∈ ω) → suc 𝑤 ∈ ω)
45 eqid 2823 . . . . . . . 8 (𝐹‘suc 𝑤) = (𝐹‘suc 𝑤)
46 fveq2 6672 . . . . . . . . 9 (𝑦 = suc 𝑤 → (𝐹𝑦) = (𝐹‘suc 𝑤))
4746rspceeqv 3640 . . . . . . . 8 ((suc 𝑤 ∈ ω ∧ (𝐹‘suc 𝑤) = (𝐹‘suc 𝑤)) → ∃𝑦 ∈ ω (𝐹‘suc 𝑤) = (𝐹𝑦))
4844, 45, 47sylancl 588 . . . . . . 7 ((((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) ∧ 𝑤 ∈ ω) → ∃𝑦 ∈ ω (𝐹‘suc 𝑤) = (𝐹𝑦))
49 fvex 6685 . . . . . . . 8 (𝐹‘suc 𝑤) ∈ V
5021elrnmpt 5830 . . . . . . . 8 ((𝐹‘suc 𝑤) ∈ V → ((𝐹‘suc 𝑤) ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ↔ ∃𝑦 ∈ ω (𝐹‘suc 𝑤) = (𝐹𝑦)))
5149, 50ax-mp 5 . . . . . . 7 ((𝐹‘suc 𝑤) ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ↔ ∃𝑦 ∈ ω (𝐹‘suc 𝑤) = (𝐹𝑦))
5248, 51sylibr 236 . . . . . 6 ((((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) ∧ 𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦)))
53 suceq 6258 . . . . . . . . . 10 (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤)
5453fveq2d 6676 . . . . . . . . 9 (𝑥 = 𝑤 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑤))
55 fveq2 6672 . . . . . . . . 9 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
5654, 55eleq12d 2909 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐹‘suc 𝑥) ∈ (𝐹𝑥) ↔ (𝐹‘suc 𝑤) ∈ (𝐹𝑤)))
5756rspccva 3624 . . . . . . 7 ((∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥) ∧ 𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ (𝐹𝑤))
5857adantll 712 . . . . . 6 ((((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) ∧ 𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ (𝐹𝑤))
59 inelcm 4416 . . . . . 6 (((𝐹‘suc 𝑤) ∈ ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∧ (𝐹‘suc 𝑤) ∈ (𝐹𝑤)) → (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) ≠ ∅)
6052, 58, 59syl2anc 586 . . . . 5 ((((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) ∧ 𝑤 ∈ ω) → (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) ≠ ∅)
6160neneqd 3023 . . . 4 ((((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) ∧ 𝑤 ∈ ω) → ¬ (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) = ∅)
6261nrexdv 3272 . . 3 (((𝐹‘∅) ∈ On ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥)) → ¬ ∃𝑤 ∈ ω (ran (𝑦 ∈ ω ↦ (𝐹𝑦)) ∩ (𝐹𝑤)) = ∅)
6342, 62pm2.65da 815 . 2 ((𝐹‘∅) ∈ On → ¬ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥))
64 rexnal 3240 . 2 (∃𝑥 ∈ ω ¬ (𝐹‘suc 𝑥) ∈ (𝐹𝑥) ↔ ¬ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ∈ (𝐹𝑥))
6563, 64sylibr 236 1 ((𝐹‘∅) ∈ On → ∃𝑥 ∈ ω ¬ (𝐹‘suc 𝑥) ∈ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  c0 4293  cmpt 5148   E cep 5466   We wwe 5515  dom cdm 5557  ran crn 5558  Oncon0 6193  suc csuc 6195  wf 6353  cfv 6357  ωcom 7582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-om 7583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator