MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Structured version   Visualization version   GIF version

Theorem peano5 7051
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as theorem findes 7058. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
peano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldifn 3717 . . . . . 6 (𝑦 ∈ (ω ∖ 𝐴) → ¬ 𝑦𝐴)
21adantl 482 . . . . 5 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ 𝑦𝐴)
3 eldifi 3716 . . . . . . . . . 10 (𝑦 ∈ (ω ∖ 𝐴) → 𝑦 ∈ ω)
43adantl 482 . . . . . . . . 9 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → 𝑦 ∈ ω)
5 elndif 3718 . . . . . . . . . 10 (∅ ∈ 𝐴 → ¬ ∅ ∈ (ω ∖ 𝐴))
6 eleq1 2686 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω ∖ 𝐴)))
76biimpcd 239 . . . . . . . . . . 11 (𝑦 ∈ (ω ∖ 𝐴) → (𝑦 = ∅ → ∅ ∈ (ω ∖ 𝐴)))
87necon3bd 2804 . . . . . . . . . 10 (𝑦 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈ (ω ∖ 𝐴) → 𝑦 ≠ ∅))
95, 8mpan9 486 . . . . . . . . 9 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → 𝑦 ≠ ∅)
10 nnsuc 7044 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑦 ≠ ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
114, 9, 10syl2anc 692 . . . . . . . 8 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
1211adantlr 750 . . . . . . 7 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
1312adantr 481 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
14 nfra1 2937 . . . . . . . . . . 11 𝑥𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)
15 nfv 1840 . . . . . . . . . . 11 𝑥(𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
1614, 15nfan 1825 . . . . . . . . . 10 𝑥(∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅))
17 nfv 1840 . . . . . . . . . 10 𝑥 𝑦𝐴
18 rsp 2925 . . . . . . . . . . 11 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑥 ∈ ω → (𝑥𝐴 → suc 𝑥𝐴)))
19 vex 3193 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
2019sucid 5773 . . . . . . . . . . . . . . . . 17 𝑥 ∈ suc 𝑥
21 eleq2 2687 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑥𝑦𝑥 ∈ suc 𝑥))
2220, 21mpbiri 248 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥𝑥𝑦)
23 eleq1 2686 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ suc 𝑥 ∈ ω))
24 peano2b 7043 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
2523, 24syl6bbr 278 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ 𝑥 ∈ ω))
26 minel 4011 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ¬ 𝑥 ∈ (ω ∖ 𝐴))
27 neldif 3719 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ ¬ 𝑥 ∈ (ω ∖ 𝐴)) → 𝑥𝐴)
2826, 27sylan2 491 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ (𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → 𝑥𝐴)
2928exp32 630 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
3025, 29syl6bi 243 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴))))
3122, 30mpid 44 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
323, 31syl5 34 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑥 → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
3332impd 447 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑥𝐴))
34 eleq1a 2693 . . . . . . . . . . . . . 14 (suc 𝑥𝐴 → (𝑦 = suc 𝑥𝑦𝐴))
3534com12 32 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → (suc 𝑥𝐴𝑦𝐴))
3633, 35imim12d 81 . . . . . . . . . . . 12 (𝑦 = suc 𝑥 → ((𝑥𝐴 → suc 𝑥𝐴) → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)))
3736com13 88 . . . . . . . . . . 11 ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ((𝑥𝐴 → suc 𝑥𝐴) → (𝑦 = suc 𝑥𝑦𝐴)))
3818, 37sylan9 688 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (𝑥 ∈ ω → (𝑦 = suc 𝑥𝑦𝐴)))
3916, 17, 38rexlimd 3021 . . . . . . . . 9 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
4039exp32 630 . . . . . . . 8 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))))
4140a1i 11 . . . . . . 7 (∅ ∈ 𝐴 → (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴)))))
4241imp41 618 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
4313, 42mpd 15 . . . . 5 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)
442, 43mtand 690 . . . 4 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4544nrexdv 2997 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
46 ordom 7036 . . . . 5 Ord ω
47 difss 3721 . . . . 5 (ω ∖ 𝐴) ⊆ ω
48 tz7.5 5713 . . . . 5 ((Ord ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖ 𝐴) ≠ ∅) → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4946, 47, 48mp3an12 1411 . . . 4 ((ω ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
5049necon1bi 2818 . . 3 (¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (ω ∖ 𝐴) = ∅)
5145, 50syl 17 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → (ω ∖ 𝐴) = ∅)
52 ssdif0 3922 . 2 (ω ⊆ 𝐴 ↔ (ω ∖ 𝐴) = ∅)
5351, 52sylibr 224 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  cdif 3557  cin 3559  wss 3560  c0 3897  Ord word 5691  suc csuc 5694  ωcom 7027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-tr 4723  df-eprel 4995  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-om 7028
This theorem is referenced by:  find  7053  finds  7054  finds2  7056  omex  8500  dfom3  8504
  Copyright terms: Public domain W3C validator