Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Structured version   Visualization version   GIF version

Theorem pmapglb2N 34534
 Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows 𝑆 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2N ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 34126 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2621 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 33957 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6152 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 34530 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2655 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 fveq2 6148 . . . . . 6 (𝑆 = ∅ → (𝐺𝑆) = (𝐺‘∅))
1211fveq2d 6152 . . . . 5 (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘∅)))
13 riin0 4560 . . . . 5 (𝑆 = ∅ → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝐴)
1412, 13eqeq12d 2636 . . . 4 (𝑆 = ∅ → ((𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
1510, 14syl5ibrcom 237 . . 3 (𝐾 ∈ HL → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
1615adantr 481 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
17 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
1817, 2, 7pmapglb 34533 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
19 simpr 477 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝑆)
20 simpll 789 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
21 ssel2 3578 . . . . . . . . . . . . 13 ((𝑆𝐵𝑥𝑆) → 𝑥𝐵)
2221adantll 749 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
2317, 6, 7pmapssat 34522 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐵) → (𝑀𝑥) ⊆ 𝐴)
2420, 22, 23syl2anc 692 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑀𝑥) ⊆ 𝐴)
2519, 24jca 554 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
2625ex 450 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑥𝑆 → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
2726eximdv 1843 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
28 n0 3907 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
29 df-rex 2913 . . . . . . . 8 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
3027, 28, 293imtr4g 285 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴))
31303impia 1258 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
32 iinss 4537 . . . . . 6 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
34 sseqin2 3795 . . . . 5 ( 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3533, 34sylib 208 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3618, 35eqtr4d 2658 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
37363expia 1264 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
3816, 37pm2.61dne 2876 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908   ∩ cin 3554   ⊆ wss 3555  ∅c0 3891  ∩ ciin 4486  ‘cfv 5847  Basecbs 15781  glbcglb 16864  1.cp1 16959  OPcops 33936  Atomscatm 34027  HLchlt 34114  pmapcpmap 34260 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33940  df-ol 33942  df-oml 33943  df-ats 34031  df-hlat 34115  df-pmap 34267 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator