MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quslem Structured version   Visualization version   GIF version

Theorem quslem 16376
Description: The function in qusval 16375 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
quslem (𝜑𝐹:𝑉onto→(𝑉 / ))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem quslem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6 (𝜑𝑊)
2 ecexg 7903 . . . . . 6 ( 𝑊 → [𝑥] ∈ V)
31, 2syl 17 . . . . 5 (𝜑 → [𝑥] ∈ V)
43ralrimivw 3093 . . . 4 (𝜑 → ∀𝑥𝑉 [𝑥] ∈ V)
5 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
65fnmpt 6169 . . . 4 (∀𝑥𝑉 [𝑥] ∈ V → 𝐹 Fn 𝑉)
74, 6syl 17 . . 3 (𝜑𝐹 Fn 𝑉)
8 dffn4 6270 . . 3 (𝐹 Fn 𝑉𝐹:𝑉onto→ran 𝐹)
97, 8sylib 208 . 2 (𝜑𝐹:𝑉onto→ran 𝐹)
105rnmpt 5514 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
11 df-qs 7905 . . . 4 (𝑉 / ) = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
1210, 11eqtr4i 2773 . . 3 ran 𝐹 = (𝑉 / )
13 foeq3 6262 . . 3 (ran 𝐹 = (𝑉 / ) → (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / )))
1412, 13ax-mp 5 . 2 (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / ))
159, 14sylib 208 1 (𝜑𝐹:𝑉onto→(𝑉 / ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1620  wcel 2127  {cab 2734  wral 3038  wrex 3039  Vcvv 3328  cmpt 4869  ran crn 5255   Fn wfn 6032  ontowfo 6035  cfv 6037  (class class class)co 6801  [cec 7897   / cqs 7898  Basecbs 16030   /s cqus 16338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-fun 6039  df-fn 6040  df-fo 6043  df-ec 7901  df-qs 7905
This theorem is referenced by:  qusbas  16378  quss  16379  qusaddvallem  16384  qusaddflem  16385  qusaddval  16386  qusaddf  16387  qusmulval  16388  qusmulf  16389  qusgrp2  17705  qusring2  18791  znzrhfo  20069  qustps  21698  qustgpopn  22095  qustgplem  22096  qustgphaus  22098
  Copyright terms: Public domain W3C validator