Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusscaval Structured version   Visualization version   GIF version

Theorem qusscaval 30942
Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusscaval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusscaval.m = ( ·𝑠𝑁)
Assertion
Ref Expression
qusscaval ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))

Proof of Theorem qusscaval
Dummy variables 𝑘 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusscaval.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 eqgvscpbl.v . . . . 5 𝐵 = (Base‘𝑀)
43a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑀))
5 eqid 2820 . . . 4 (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 7182 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
8 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
92, 4, 5, 7, 8qusval 16810 . . 3 (𝜑𝑁 = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
102, 4, 5, 7, 8quslem 16811 . . 3 (𝜑 → (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵onto→(𝐵 / (𝑀 ~QG 𝐺)))
11 eqid 2820 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
12 eqgvscpbl.s . . 3 𝑆 = (Base‘(Scalar‘𝑀))
13 eqgvscpbl.p . . 3 · = ( ·𝑠𝑀)
14 qusscaval.m . . 3 = ( ·𝑠𝑁)
15 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
168adantr 483 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑀 ∈ LMod)
17 eqgvscpbl.g . . . . 5 (𝜑𝐺 ∈ (LSubSp‘𝑀))
1817adantr 483 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝐺 ∈ (LSubSp‘𝑀))
19 simpr1 1189 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑘𝑆)
20 simpr2 1190 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑢𝐵)
21 simpr3 1191 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑣𝐵)
223, 15, 12, 13, 16, 18, 19, 1, 14, 5, 20, 21qusvscpbl 30941 . . 3 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → (((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣))))
239, 4, 10, 8, 11, 12, 13, 14, 22imasvscaval 16806 . 2 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)))
24 eceq1 8320 . . . . 5 (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺))
25 ecexg 8286 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V)
266, 25ax-mp 5 . . . . 5 [𝑋](𝑀 ~QG 𝐺) ∈ V
2724, 5, 26fvmpt 6761 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
28273ad2ant3 1130 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
2928oveq2d 7165 . 2 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 [𝑋](𝑀 ~QG 𝐺)))
303, 11, 13, 12lmodvscl 19646 . . . 4 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
318, 30syl3an1 1158 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
32 eceq1 8320 . . . 4 (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
33 ecexg 8286 . . . . 5 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V)
346, 33ax-mp 5 . . . 4 [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V
3532, 5, 34fvmpt 6761 . . 3 ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3631, 35syl 17 . 2 ((𝜑𝐾𝑆𝑋𝐵) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3723, 29, 363eqtr3d 2863 1 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  Vcvv 3491  cmpt 5139  cfv 6348  (class class class)co 7149  [cec 8280   / cqs 8281  Basecbs 16478  Scalarcsca 16563   ·𝑠 cvsca 16564   /s cqus 16773   ~QG cqg 18270  LModclmod 19629  LSubSpclss 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-ec 8284  df-qs 8288  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-0g 16710  df-imas 16776  df-qus 16777  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-eqg 18273  df-mgp 19235  df-ur 19247  df-ring 19294  df-lmod 19631  df-lss 19699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator