MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgdmlim Structured version   Visualization version   GIF version

Theorem rdgdmlim 8053
Description: The domain of the recursive definition generator is a limit ordinal. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdgdmlim Lim dom rec(𝐹, 𝐴)

Proof of Theorem rdgdmlim
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-rdg 8046 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
21tfr1a 8030 . 2 (Fun rec(𝐹, 𝐴) ∧ Lim dom rec(𝐹, 𝐴))
32simpri 488 1 Lim dom rec(𝐹, 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3494  c0 4291  ifcif 4467   cuni 4838  cmpt 5146  dom cdm 5555  ran crn 5556  Lim wlim 6192  Fun wfun 6349  cfv 6355  reccrdg 8045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-wrecs 7947  df-recs 8008  df-rdg 8046
This theorem is referenced by:  rdg0  8057  rdgsucg  8059  rdglimg  8061  rdgsucmptnf  8065  frfnom  8070  frsuc  8072  r1funlim  9195  ackbij2  9665
  Copyright terms: Public domain W3C validator