MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frfnom Structured version   Visualization version   GIF version

Theorem frfnom 7293
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
frfnom (rec(𝐹, 𝐴) ↾ ω) Fn ω

Proof of Theorem frfnom
StepHypRef Expression
1 rdgfun 7275 . . 3 Fun rec(𝐹, 𝐴)
2 funres 5728 . . 3 (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω))
31, 2ax-mp 5 . 2 Fun (rec(𝐹, 𝐴) ↾ ω)
4 dmres 5230 . . 3 dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴))
5 rdgdmlim 7276 . . . . 5 Lim dom rec(𝐹, 𝐴)
6 limomss 6838 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
75, 6ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
8 df-ss 3458 . . . 4 (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω)
97, 8mpbi 218 . . 3 (ω ∩ dom rec(𝐹, 𝐴)) = ω
104, 9eqtri 2536 . 2 dom (rec(𝐹, 𝐴) ↾ ω) = ω
11 df-fn 5692 . 2 ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω))
123, 10, 11mpbir2an 956 1 (rec(𝐹, 𝐴) ↾ ω) Fn ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  cin 3443  wss 3444  dom cdm 4932  cres 4934  Lim wlim 5531  Fun wfun 5683   Fn wfn 5684  ωcom 6833  reccrdg 7268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-om 6834  df-wrecs 7169  df-recs 7231  df-rdg 7269
This theorem is referenced by:  frsucmptn  7297  seqomlem2  7309  seqomlem3  7310  seqomlem4  7311  unblem4  7976  dffi3  8096  inf0  8277  inf3lem6  8289  alephfplem4  8689  alephfp  8690  infpssrlem3  8886  itunifn  8998  hsmexlem5  9011  axdclem2  9101  wunex2  9315  wuncval2  9324  peano5nni  10778  1nn  10786  peano2nn  10787  om2uzrani  12481  om2uzf1oi  12482  uzrdglem  12486  uzrdgfni  12487  uzrdg0i  12488  hashkf  12849  hashgval2  12893  dftrpred2  30805  trpredpred  30814  trpredex  30823  neibastop2lem  31359
  Copyright terms: Public domain W3C validator