![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdgfun | Structured version Visualization version GIF version |
Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
rdgfun | ⊢ Fun rec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rdg 7676 | . . 3 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
2 | 1 | tfr1a 7660 | . 2 ⊢ (Fun rec(𝐹, 𝐴) ∧ Lim dom rec(𝐹, 𝐴)) |
3 | 2 | simpli 476 | 1 ⊢ Fun rec(𝐹, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 Vcvv 3340 ∅c0 4058 ifcif 4230 ∪ cuni 4588 ↦ cmpt 4881 dom cdm 5266 ran crn 5267 Lim wlim 5885 Fun wfun 6043 ‘cfv 6049 reccrdg 7675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-wrecs 7577 df-recs 7638 df-rdg 7676 |
This theorem is referenced by: rdgsucg 7689 rdglimg 7691 frfnom 7700 r1funlim 8804 ackbij2 9277 itunifval 9450 wunex2 9772 nnexALT 11234 axdc4uzlem 12996 seqex 13017 |
Copyright terms: Public domain | W3C validator |