Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2xpreen Structured version   Visualization version   GIF version

Theorem rrx2xpreen 44755
Description: The set of points in the two dimensional Euclidean plane and the set of ordered pairs of real numbers (the cartesian product of the real numbers) are equinumerous. (Contributed by AV, 12-Mar-2023.)
Hypothesis
Ref Expression
rrx2xpreen.r 𝑅 = (ℝ ↑m {1, 2})
Assertion
Ref Expression
rrx2xpreen 𝑅 ≈ (ℝ × ℝ)

Proof of Theorem rrx2xpreen
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10628 . . . . 5 ℝ ∈ V
21, 1mpoex 7777 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) ∈ V
3 f1oeq1 6604 . . . 4 (𝑓 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) → (𝑓:(ℝ × ℝ)–1-1-onto𝑅 ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅))
4 rrx2xpreen.r . . . . 5 𝑅 = (ℝ ↑m {1, 2})
5 eqid 2821 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
64, 5rrx2xpref1o 44754 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅
72, 3, 6ceqsexv2d 3542 . . 3 𝑓 𝑓:(ℝ × ℝ)–1-1-onto𝑅
8 bren 8518 . . 3 ((ℝ × ℝ) ≈ 𝑅 ↔ ∃𝑓 𝑓:(ℝ × ℝ)–1-1-onto𝑅)
97, 8mpbir 233 . 2 (ℝ × ℝ) ≈ 𝑅
109ensymi 8559 1 𝑅 ≈ (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1780  {cpr 4569  cop 4573   class class class wbr 5066   × cxp 5553  1-1-ontowf1o 6354  (class class class)co 7156  cmpo 7158  m cmap 8406  cen 8506  cr 10536  1c1 10538  2c2 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-2 11701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator