Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fvfmla0 Structured version   Visualization version   GIF version

Theorem satfv0fvfmla0 32679
Description: The value of the satisfaction predicate as function over a wff code at . (Contributed by AV, 2-Nov-2023.)
Hypothesis
Ref Expression
satfv0fv.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0fvfmla0 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝐸,𝑎   𝑀,𝑎   𝑋,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem satfv0fvfmla0
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 32637 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
2 satfv0fv.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
32fveq1i 6664 . . . . 5 (𝑆‘∅) = ((𝑀 Sat 𝐸)‘∅)
43funeqi 6369 . . . 4 (Fun (𝑆‘∅) ↔ Fun ((𝑀 Sat 𝐸)‘∅))
51, 4sylibr 236 . . 3 ((𝑀𝑉𝐸𝑊) → Fun (𝑆‘∅))
653adant3 1127 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → Fun (𝑆‘∅))
7 fmla0 32648 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
87eleq2i 2903 . . . . . . 7 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
9 eqeq1 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑋 = (𝑖𝑔𝑗)))
1092rexbidv 3299 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
1110elrab 3676 . . . . . . 7 (𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
128, 11bitri 277 . . . . . 6 (𝑋 ∈ (Fmla‘∅) ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
13 simpr 487 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → 𝑋 = (𝑖𝑔𝑗))
14 goel 32613 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1514eqeq2d 2831 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) ↔ 𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
16 2fveq3 6668 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
17 0ex 5204 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ V
18 opex 5349 . . . . . . . . . . . . . . . . . . 19 𝑖, 𝑗⟩ ∈ V
1917, 18op2nd 7691 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩) = ⟨𝑖, 𝑗
2019fveq2i 6666 . . . . . . . . . . . . . . . . 17 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (1st ‘⟨𝑖, 𝑗⟩)
21 vex 3494 . . . . . . . . . . . . . . . . . 18 𝑖 ∈ V
22 vex 3494 . . . . . . . . . . . . . . . . . 18 𝑗 ∈ V
2321, 22op1st 7690 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑖, 𝑗⟩) = 𝑖
2420, 23eqtri 2843 . . . . . . . . . . . . . . . 16 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑖
2516, 24syl6eq 2871 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = 𝑖)
2625fveq2d 6667 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(1st ‘(2nd𝑋))) = (𝑎𝑖))
27 2fveq3 6668 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
2819fveq2i 6666 . . . . . . . . . . . . . . . . 17 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (2nd ‘⟨𝑖, 𝑗⟩)
2921, 22op2nd 7691 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑖, 𝑗⟩) = 𝑗
3028, 29eqtri 2843 . . . . . . . . . . . . . . . 16 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑗
3127, 30syl6eq 2871 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = 𝑗)
3231fveq2d 6667 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(2nd ‘(2nd𝑋))) = (𝑎𝑗))
3326, 32breq12d 5072 . . . . . . . . . . . . 13 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3415, 33syl6bi 255 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗))))
3534imp 409 . . . . . . . . . . 11 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3635rabbidv 3477 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
3713, 36jca 514 . . . . . . . . 9 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
3837ex 415 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
3938reximdva 3273 . . . . . . 7 (𝑖 ∈ ω → (∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4039reximia 3241 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4112, 40simplbiim 507 . . . . 5 (𝑋 ∈ (Fmla‘∅) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
42413ad2ant3 1130 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
43 simp3 1133 . . . . 5 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
44 ovex 7182 . . . . . 6 (𝑀m ω) ∈ V
4544rabex 5228 . . . . 5 {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V
46 eqeq1 2824 . . . . . . . 8 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
479, 46bi2anan9 637 . . . . . . 7 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
48472rexbidv 3299 . . . . . 6 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4948opelopabga 5413 . . . . 5 ((𝑋 ∈ (Fmla‘∅) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5043, 45, 49sylancl 588 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5142, 50mpbird 259 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
522satfv0 32624 . . . . 5 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
5352eleq2d 2897 . . . 4 ((𝑀𝑉𝐸𝑊) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
54533adant3 1127 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
5551, 54mpbird 259 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅))
56 funopfv 6710 . 2 (Fun (𝑆‘∅) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}))
576, 55, 56sylc 65 1 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wrex 3138  {crab 3141  Vcvv 3491  c0 4284  cop 4566   class class class wbr 5059  {copab 5121  Fun wfun 6342  cfv 6348  (class class class)co 7149  ωcom 7573  1st c1st 7680  2nd c2nd 7681  m cmap 8399  𝑔cgoe 32599   Sat csat 32602  Fmlacfmla 32603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-map 8401  df-goel 32606  df-sat 32609  df-fmla 32611
This theorem is referenced by:  satefvfmla0  32684
  Copyright terms: Public domain W3C validator