Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefvfmla0 Structured version   Visualization version   GIF version

Theorem satefvfmla0 32910
Description: The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.)
Assertion
Ref Expression
satefvfmla0 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝑀,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem satefvfmla0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satefv 32906 . 2 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
2 incom 4109 . . . . . . . . 9 ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E )
3 sqxpexg 7483 . . . . . . . . . 10 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
4 inex1g 5194 . . . . . . . . . 10 ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V)
53, 4syl 17 . . . . . . . . 9 (𝑀𝑉 → ((𝑀 × 𝑀) ∩ E ) ∈ V)
62, 5eqeltrid 2857 . . . . . . . 8 (𝑀𝑉 → ( E ∩ (𝑀 × 𝑀)) ∈ V)
76ancli 552 . . . . . . 7 (𝑀𝑉 → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
87adantr 484 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
9 satom 32848 . . . . . 6 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
108, 9syl 17 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1110fveq1d 6666 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋))
12 satfun 32903 . . . . . . . 8 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
138, 12syl 17 . . . . . . 7 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1413ffund 6508 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1510eqcomd 2765 . . . . . . 7 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1615funeqd 6363 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)))
1714, 16mpbird 260 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
18 peano1 7607 . . . . . 6 ∅ ∈ ω
1918a1i 11 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ∅ ∈ ω)
2018a1i 11 . . . . . . . . 9 (𝑀𝑉 → ∅ ∈ ω)
21 satfdmfmla 32892 . . . . . . . . 9 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ ∅ ∈ ω) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅) = (Fmla‘∅))
226, 20, 21mpd3an23 1461 . . . . . . . 8 (𝑀𝑉 → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅) = (Fmla‘∅))
2322eqcomd 2765 . . . . . . 7 (𝑀𝑉 → (Fmla‘∅) = dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅))
2423eleq2d 2838 . . . . . 6 (𝑀𝑉 → (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)))
2524biimpa 480 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅))
26 eqid 2759 . . . . . 6 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)
2726fviunfun 7657 . . . . 5 ((Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ∧ ∅ ∈ ω ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
2817, 19, 25, 27syl3anc 1369 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
2911, 28eqtrd 2794 . . 3 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
30 simpl 486 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑀𝑉)
316adantr 484 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ( E ∩ (𝑀 × 𝑀)) ∈ V)
32 simpr 488 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
33 eqid 2759 . . . . . 6 (𝑀 Sat ( E ∩ (𝑀 × 𝑀))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))
3433satfv0fvfmla0 32905 . . . . 5 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ 𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))})
3530, 31, 32, 34syl3anc 1369 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))})
36 elmapi 8445 . . . . . . . . 9 (𝑎 ∈ (𝑀m ω) → 𝑎:ω⟶𝑀)
37 simpl 486 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → 𝑎:ω⟶𝑀)
38 fmla0xp 32875 . . . . . . . . . . . . . . . 16 (Fmla‘∅) = ({∅} × (ω × ω))
3938eleq2i 2844 . . . . . . . . . . . . . . 15 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ ({∅} × (ω × ω)))
40 elxp 5552 . . . . . . . . . . . . . . 15 (𝑋 ∈ ({∅} × (ω × ω)) ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))))
4139, 40bitri 278 . . . . . . . . . . . . . 14 (𝑋 ∈ (Fmla‘∅) ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))))
42 xp1st 7732 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ω × ω) → (1st𝑦) ∈ ω)
4342ad2antll 728 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st𝑦) ∈ ω)
44 vex 3414 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
45 vex 3414 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
4644, 45op2ndd 7711 . . . . . . . . . . . . . . . . . . 19 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd𝑋) = 𝑦)
4746fveq2d 6668 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨𝑥, 𝑦⟩ → (1st ‘(2nd𝑋)) = (1st𝑦))
4847eleq1d 2837 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨𝑥, 𝑦⟩ → ((1st ‘(2nd𝑋)) ∈ ω ↔ (1st𝑦) ∈ ω))
4948adantr 484 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → ((1st ‘(2nd𝑋)) ∈ ω ↔ (1st𝑦) ∈ ω))
5043, 49mpbird 260 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st ‘(2nd𝑋)) ∈ ω)
5150exlimivv 1934 . . . . . . . . . . . . . 14 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st ‘(2nd𝑋)) ∈ ω)
5241, 51sylbi 220 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmla‘∅) → (1st ‘(2nd𝑋)) ∈ ω)
5352ad2antll 728 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (1st ‘(2nd𝑋)) ∈ ω)
5437, 53ffvelrnd 6850 . . . . . . . . . . 11 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀)
55 xp2nd 7733 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ω × ω) → (2nd𝑦) ∈ ω)
5655ad2antll 728 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd𝑦) ∈ ω)
5746fveq2d 6668 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd ‘(2nd𝑋)) = (2nd𝑦))
5857eleq1d 2837 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(2nd𝑋)) ∈ ω ↔ (2nd𝑦) ∈ ω))
5958adantr 484 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → ((2nd ‘(2nd𝑋)) ∈ ω ↔ (2nd𝑦) ∈ ω))
6056, 59mpbird 260 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd ‘(2nd𝑋)) ∈ ω)
6160exlimivv 1934 . . . . . . . . . . . . . 14 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd ‘(2nd𝑋)) ∈ ω)
6241, 61sylbi 220 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmla‘∅) → (2nd ‘(2nd𝑋)) ∈ ω)
6362ad2antll 728 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (2nd ‘(2nd𝑋)) ∈ ω)
6437, 63ffvelrnd 6850 . . . . . . . . . . 11 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)
6554, 64jca 515 . . . . . . . . . 10 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀))
6665ex 416 . . . . . . . . 9 (𝑎:ω⟶𝑀 → ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)))
6736, 66syl 17 . . . . . . . 8 (𝑎 ∈ (𝑀m ω) → ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)))
6867impcom 411 . . . . . . 7 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀))
69 brinxp 5605 . . . . . . . 8 (((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))))
7069bicomd 226 . . . . . . 7 (((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋)))))
7168, 70syl 17 . . . . . 6 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋)))))
72 fvex 6677 . . . . . . 7 (𝑎‘(2nd ‘(2nd𝑋))) ∈ V
7372epeli 5442 . . . . . 6 ((𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋))))
7471, 73bitrdi 290 . . . . 5 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))))
7574rabbidva 3391 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
7635, 75eqtrd 2794 . . 3 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
7729, 76eqtrd 2794 . 2 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
781, 77eqtrd 2794 1 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1539  wex 1782  wcel 2112  {crab 3075  Vcvv 3410  cin 3860  c0 4228  𝒫 cpw 4498  {csn 4526  cop 4532   ciun 4887   class class class wbr 5037   E cep 5439   × cxp 5527  dom cdm 5529  Fun wfun 6335  wf 6337  cfv 6341  (class class class)co 7157  ωcom 7586  1st c1st 7698  2nd c2nd 7699  m cmap 8423   Sat csat 32828  Fmlacfmla 32829   Sat csate 32830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-ac2 9937
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-card 9415  df-ac 9590  df-goel 32832  df-gona 32833  df-goal 32834  df-sat 32835  df-sate 32836  df-fmla 32837
This theorem is referenced by:  sategoelfvb  32911  prv1n  32923
  Copyright terms: Public domain W3C validator