MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomnen Structured version   Visualization version   GIF version

Theorem sdomnen 8540
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.)
Assertion
Ref Expression
sdomnen (𝐴𝐵 → ¬ 𝐴𝐵)

Proof of Theorem sdomnen
StepHypRef Expression
1 brsdom 8534 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 499 1 (𝐴𝐵 → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   class class class wbr 5068  cen 8508  cdom 8509  csdm 8510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-dif 3941  df-br 5069  df-sdom 8514
This theorem is referenced by:  bren2  8542  domdifsn  8602  sdomnsym  8644  domnsym  8645  sdomirr  8656  php5  8707  phpeqd  8708  sucdom2  8716  pssinf  8730  f1finf1o  8747  isfinite2  8778  cardom  9417  pm54.43  9431  pr2ne  9433  alephdom  9509  cdainflem  9615  ackbij1b  9663  isfin4p1  9739  fin23lem25  9748  fin67  9819  axcclem  9881  canthp1lem2  10077  gchinf  10081  pwfseqlem4  10086  tskssel  10181  1nprm  16025  en2top  21595  domalom  34687  pibt2  34700  rp-isfinite6  39891  ensucne0OLD  39903  iscard5  39908
  Copyright terms: Public domain W3C validator