MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4p1 Structured version   Visualization version   GIF version

Theorem isfin4p1 9737
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 9719 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
isfin4p1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))

Proof of Theorem isfin4p1
StepHypRef Expression
1 1on 8109 . . . 4 1o ∈ On
2 djudoml 9610 . . . 4 ((𝐴 ∈ FinIV ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
31, 2mpan2 689 . . 3 (𝐴 ∈ FinIV𝐴 ≼ (𝐴 ⊔ 1o))
4 1oex 8110 . . . . . . . . . . 11 1o ∈ V
54snid 4601 . . . . . . . . . 10 1o ∈ {1o}
6 0lt1o 8129 . . . . . . . . . 10 ∅ ∈ 1o
7 opelxpi 5592 . . . . . . . . . 10 ((1o ∈ {1o} ∧ ∅ ∈ 1o) → ⟨1o, ∅⟩ ∈ ({1o} × 1o))
85, 6, 7mp2an 690 . . . . . . . . 9 ⟨1o, ∅⟩ ∈ ({1o} × 1o)
9 elun2 4153 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({1o} × 1o) → ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)))
108, 9ax-mp 5 . . . . . . . 8 ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
11 df-dju 9330 . . . . . . . 8 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
1210, 11eleqtrri 2912 . . . . . . 7 ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)
13 1n0 8119 . . . . . . . 8 1o ≠ ∅
14 opelxp1 5596 . . . . . . . . . 10 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
15 elsni 4584 . . . . . . . . . 10 (1o ∈ {∅} → 1o = ∅)
1614, 15syl 17 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
1716necon3ai 3041 . . . . . . . 8 (1o ≠ ∅ → ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴))
1813, 17ax-mp 5 . . . . . . 7 ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)
19 ssun1 4148 . . . . . . . . 9 ({∅} × 𝐴) ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
2019, 11sseqtrri 4004 . . . . . . . 8 ({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o)
21 ssnelpss 4088 . . . . . . . 8 (({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o) → ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)))
2220, 21ax-mp 5 . . . . . . 7 ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o))
2312, 18, 22mp2an 690 . . . . . 6 ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)
24 0ex 5211 . . . . . . . 8 ∅ ∈ V
25 relen 8514 . . . . . . . . 9 Rel ≈
2625brrelex1i 5608 . . . . . . . 8 (𝐴 ≈ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
27 xpsnen2g 8610 . . . . . . . 8 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
2824, 26, 27sylancr 589 . . . . . . 7 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ 𝐴)
29 entr 8561 . . . . . . 7 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o)) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
3028, 29mpancom 686 . . . . . 6 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
31 fin4i 9720 . . . . . 6 ((({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o) ∧ ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
3223, 30, 31sylancr 589 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
33 fin4en1 9731 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV → (𝐴 ⊔ 1o) ∈ FinIV))
3432, 33mtod 200 . . . 4 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ 𝐴 ∈ FinIV)
3534con2i 141 . . 3 (𝐴 ∈ FinIV → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
36 brsdom 8532 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) ↔ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 1o)))
373, 35, 36sylanbrc 585 . 2 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
38 sdomnen 8538 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
39 infdju1 9615 . . . . 5 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
4039ensymd 8560 . . . 4 (ω ≼ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
4138, 40nsyl 142 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ ω ≼ 𝐴)
42 relsdom 8516 . . . . 5 Rel ≺
4342brrelex1i 5608 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
44 isfin4-2 9736 . . . 4 (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4543, 44syl 17 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4641, 45mpbird 259 . 2 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ FinIV)
4737, 46impbii 211 1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  cun 3934  wss 3936  wpss 3937  c0 4291  {csn 4567  cop 4573   class class class wbr 5066   × cxp 5553  Oncon0 6191  ωcom 7580  1oc1o 8095  cen 8506  cdom 8507  csdm 8508  cdju 9327  FinIVcfin4 9702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-fin4 9709
This theorem is referenced by:  fin45  9814  finngch  10077  gchinf  10079
  Copyright terms: Public domain W3C validator