Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domalom Structured version   Visualization version   GIF version

Theorem domalom 34688
Description: A class which dominates every natural number is not finite. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
domalom (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem domalom
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3219 . . . 4 𝑛𝑛 ∈ ω 𝑛𝐴
2 breq1 5069 . . . . . . 7 (𝑦 = 𝑛 → (𝑦𝐴𝑛𝐴))
32imbi2d 343 . . . . . 6 (𝑦 = 𝑛 → ((∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴) ↔ (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴)))
4 breq1 5069 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≺ 𝐴))
5 breq1 5069 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
6 breq1 5069 . . . . . . 7 (𝑦 = suc 𝑧 → (𝑦𝐴 ↔ suc 𝑧𝐴))
7 1n0 8119 . . . . . . . . 9 1o ≠ ∅
8 1onn 8265 . . . . . . . . . 10 1o ∈ ω
9 0sdomg 8646 . . . . . . . . . 10 (1o ∈ ω → (∅ ≺ 1o ↔ 1o ≠ ∅))
108, 9ax-mp 5 . . . . . . . . 9 (∅ ≺ 1o ↔ 1o ≠ ∅)
117, 10mpbir 233 . . . . . . . 8 ∅ ≺ 1o
12 breq1 5069 . . . . . . . . . 10 (𝑛 = 1o → (𝑛𝐴 ↔ 1o𝐴))
1312rspccv 3620 . . . . . . . . 9 (∀𝑛 ∈ ω 𝑛𝐴 → (1o ∈ ω → 1o𝐴))
148, 13mpi 20 . . . . . . . 8 (∀𝑛 ∈ ω 𝑛𝐴 → 1o𝐴)
15 sdomdomtr 8650 . . . . . . . 8 ((∅ ≺ 1o ∧ 1o𝐴) → ∅ ≺ 𝐴)
1611, 14, 15sylancr 589 . . . . . . 7 (∀𝑛 ∈ ω 𝑛𝐴 → ∅ ≺ 𝐴)
17 peano2 7602 . . . . . . . . . . 11 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
18 php4 8704 . . . . . . . . . . 11 (suc 𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
1917, 18syl 17 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
20 breq1 5069 . . . . . . . . . . . 12 (𝑛 = suc suc 𝑧 → (𝑛𝐴 ↔ suc suc 𝑧𝐴))
2120rspccv 3620 . . . . . . . . . . 11 (∀𝑛 ∈ ω 𝑛𝐴 → (suc suc 𝑧 ∈ ω → suc suc 𝑧𝐴))
22 peano2 7602 . . . . . . . . . . . 12 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2317, 22syl 17 . . . . . . . . . . 11 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2421, 23impel 508 . . . . . . . . . 10 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc suc 𝑧𝐴)
25 sdomdomtr 8650 . . . . . . . . . 10 ((suc 𝑧 ≺ suc suc 𝑧 ∧ suc suc 𝑧𝐴) → suc 𝑧𝐴)
2619, 24, 25syl2an2 684 . . . . . . . . 9 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc 𝑧𝐴)
2726a1d 25 . . . . . . . 8 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → (𝑧𝐴 → suc 𝑧𝐴))
2827expcom 416 . . . . . . 7 (𝑧 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴 → (𝑧𝐴 → suc 𝑧𝐴)))
294, 5, 6, 16, 28finds2 7610 . . . . . 6 (𝑦 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴))
303, 29vtoclga 3574 . . . . 5 (𝑛 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴))
3130com12 32 . . . 4 (∀𝑛 ∈ ω 𝑛𝐴 → (𝑛 ∈ ω → 𝑛𝐴))
321, 31ralrimi 3216 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω 𝑛𝐴)
33 sdomnen 8538 . . . . 5 (𝑛𝐴 → ¬ 𝑛𝐴)
34 ensym 8558 . . . . 5 (𝐴𝑛𝑛𝐴)
3533, 34nsyl 142 . . . 4 (𝑛𝐴 → ¬ 𝐴𝑛)
3635ralimi 3160 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
3732, 36syl 17 . 2 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
38 isfi 8533 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
3938notbii 322 . . 3 𝐴 ∈ Fin ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
40 ralnex 3236 . . 3 (∀𝑛 ∈ ω ¬ 𝐴𝑛 ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
4139, 40bitr4i 280 . 2 𝐴 ∈ Fin ↔ ∀𝑛 ∈ ω ¬ 𝐴𝑛)
4237, 41sylibr 236 1 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  c0 4291   class class class wbr 5066  suc csuc 6193  ωcom 7580  1oc1o 8095  cen 8506  cdom 8507  csdm 8508  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513
This theorem is referenced by:  isinf2  34689
  Copyright terms: Public domain W3C validator