MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snclseqg Structured version   Visualization version   GIF version

Theorem snclseqg 22724
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
snclseqg.x 𝑋 = (Base‘𝐺)
snclseqg.j 𝐽 = (TopOpen‘𝐺)
snclseqg.z 0 = (0g𝐺)
snclseqg.r = (𝐺 ~QG 𝑆)
snclseqg.s 𝑆 = ((cls‘𝐽)‘{ 0 })
Assertion
Ref Expression
snclseqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))

Proof of Theorem snclseqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snclseqg.s . . . 4 𝑆 = ((cls‘𝐽)‘{ 0 })
21imaeq2i 5927 . . 3 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 }))
3 tgpgrp 22686 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
43adantr 483 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
5 snclseqg.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
6 snclseqg.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
75, 6tgptopon 22690 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
87adantr 483 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 21521 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ Top)
11 snclseqg.z . . . . . . . . . . 11 0 = (0g𝐺)
126, 11grpidcl 18131 . . . . . . . . . 10 (𝐺 ∈ Grp → 0𝑋)
134, 12syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
1413snssd 4742 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝑋)
15 toponuni 21522 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
168, 15syl 17 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
1714, 16sseqtrd 4007 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝐽)
18 eqid 2821 . . . . . . . 8 𝐽 = 𝐽
1918clsss3 21667 . . . . . . 7 ((𝐽 ∈ Top ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2010, 17, 19syl2anc 586 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2120, 16sseqtrrd 4008 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝑋)
221, 21eqsstrid 4015 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
23 simpr 487 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
24 snclseqg.r . . . . 5 = (𝐺 ~QG 𝑆)
25 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
266, 24, 25eqglact 18331 . . . 4 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
274, 22, 23, 26syl3anc 1367 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
28 eqid 2821 . . . . 5 (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) = (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥))
2928, 6, 25, 5tgplacthmeo 22711 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽))
3018hmeocls 22376 . . . 4 (((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽) ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
3129, 17, 30syl2anc 586 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
322, 27, 313eqtr4a 2882 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })))
33 df-ima 5568 . . . . 5 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 })
3414resmptd 5908 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3534rneqd 5808 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3633, 35syl5eq 2868 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3711fvexi 6684 . . . . . . . 8 0 ∈ V
38 oveq2 7164 . . . . . . . . 9 (𝑥 = 0 → (𝐴(+g𝐺)𝑥) = (𝐴(+g𝐺) 0 ))
3938eqeq2d 2832 . . . . . . . 8 (𝑥 = 0 → (𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 )))
4037, 39rexsn 4620 . . . . . . 7 (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 ))
416, 25, 11grprid 18134 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
423, 41sylan 582 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
4342eqeq2d 2832 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑦 = (𝐴(+g𝐺) 0 ) ↔ 𝑦 = 𝐴))
4440, 43syl5bb 285 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = 𝐴))
4544abbidv 2885 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)} = {𝑦𝑦 = 𝐴})
46 eqid 2821 . . . . . 6 (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥))
4746rnmpt 5827 . . . . 5 ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)}
48 df-sn 4568 . . . . 5 {𝐴} = {𝑦𝑦 = 𝐴}
4945, 47, 483eqtr4g 2881 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝐴})
5036, 49eqtrd 2856 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = {𝐴})
5150fveq2d 6674 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((cls‘𝐽)‘{𝐴}))
5232, 51eqtrd 2856 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  wss 3936  {csn 4567   cuni 4838  cmpt 5146  ran crn 5556  cres 5557  cima 5558  cfv 6355  (class class class)co 7156  [cec 8287  Basecbs 16483  +gcplusg 16565  TopOpenctopn 16695  0gc0g 16713  Grpcgrp 18103   ~QG cqg 18275  Topctop 21501  TopOnctopon 21518  clsccl 21626  Homeochmeo 22361  TopGrpctgp 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-ec 8291  df-map 8408  df-0g 16715  df-topgen 16717  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-eqg 18278  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-cls 21629  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-tmd 22680  df-tgp 22681
This theorem is referenced by:  tgptsmscls  22758
  Copyright terms: Public domain W3C validator