MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprid Structured version   Visualization version   GIF version

Theorem grprid 17500
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
grpbn0.b 𝐵 = (Base‘𝐺)
grplid.p + = (+g𝐺)
grplid.o 0 = (0g𝐺)
Assertion
Ref Expression
grprid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)

Proof of Theorem grprid
StepHypRef Expression
1 grpmnd 17476 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpbn0.b . . 3 𝐵 = (Base‘𝐺)
3 grplid.p . . 3 + = (+g𝐺)
4 grplid.o . . 3 0 = (0g𝐺)
52, 3, 4mndrid 17359 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
61, 5sylan 487 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Mndcmnd 17341  Grpcgrp 17469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-riota 6651  df-ov 6693  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472
This theorem is referenced by:  grprcan  17502  grpinvid1  17517  grpinvid2  17518  grpidinv2  17521  grpasscan2  17526  grpidrcan  17527  grpsubid1  17547  grpsubadd  17550  grppncan  17553  mulgaddcom  17611  mulgdirlem  17619  mulgmodid  17628  nmzsubg  17682  0nsg  17686  cntzsubg  17815  cayleylem2  17879  odbezout  18021  lsmdisj2  18141  pj1lid  18160  frgpuplem  18231  abladdsub4  18265  odadd2  18298  gex2abl  18300  ringlz  18633  isabvd  18868  lmod0vrid  18942  lmodfopne  18949  islmhm2  19086  mplcoe1  19513  lsmcss  20084  mdetero  20464  mdetunilem6  20471  opnsubg  21958  tgpconncompeqg  21962  snclseqg  21966  clmvz  22957  deg1add  23908  ogrpaddltbi  29847  ogrpinvlt  29852  archiabllem2a  29876  archiabllem2c  29877  lflmul  34673  cdlemn4  36804  mapdh6cN  37344  hdmap1l6c  37419  hdmapinvlem3  37529  hdmapinvlem4  37530  hdmapglem7b  37537  rnglz  42209
  Copyright terms: Public domain W3C validator