MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subumgredg2 Structured version   Visualization version   GIF version

Theorem subumgredg2 27069
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.)
Hypotheses
Ref Expression
subumgredg2.v 𝑉 = (Vtx‘𝑆)
subumgredg2.i 𝐼 = (iEdg‘𝑆)
Assertion
Ref Expression
subumgredg2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Distinct variable groups:   𝑒,𝐼   𝑒,𝑉   𝑒,𝑋
Allowed substitution hints:   𝑆(𝑒)   𝐺(𝑒)

Proof of Theorem subumgredg2
StepHypRef Expression
1 fveqeq2 6681 . . 3 (𝑒 = (𝐼𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼𝑋)) = 2))
2 subumgredg2.v . . . 4 𝑉 = (Vtx‘𝑆)
3 subumgredg2.i . . . 4 𝐼 = (iEdg‘𝑆)
4 umgruhgr 26891 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
543ad2ant2 1130 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph)
6 simp1 1132 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺)
7 simp3 1134 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
82, 3, 5, 6, 7subgruhgredgd 27068 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
9 eqid 2823 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
109uhgrfun 26853 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
114, 10syl 17 . . . . . . 7 (𝐺 ∈ UMGraph → Fun (iEdg‘𝐺))
12113ad2ant2 1130 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺))
13 eqid 2823 . . . . . . . . 9 (Vtx‘𝑆) = (Vtx‘𝑆)
14 eqid 2823 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2823 . . . . . . . . 9 (Edg‘𝑆) = (Edg‘𝑆)
1613, 14, 3, 9, 15subgrprop2 27058 . . . . . . . 8 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716simp2d 1139 . . . . . . 7 (𝑆 SubGraph 𝐺𝐼 ⊆ (iEdg‘𝐺))
18173ad2ant1 1129 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺))
19 funssfv 6693 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
2019eqcomd 2829 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2112, 18, 7, 20syl3anc 1367 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2221fveq2d 6676 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋)))
23 simp2 1133 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph)
243dmeqi 5775 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
2524eleq2i 2906 . . . . . . . 8 (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝑆))
26 subgreldmiedg 27067 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
2726ex 415 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
2825, 27syl5bi 244 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺)))
2928a1d 25 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺))))
30293imp 1107 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺))
3114, 9umgredg2 26887 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3223, 30, 31syl2anc 586 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3322, 32eqtrd 2858 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = 2)
341, 8, 33elrabd 3684 . 2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2})
35 prprrab 13834 . 2 {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
3634, 35eleqtrdi 2925 1 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  {crab 3144  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   class class class wbr 5068  dom cdm 5557  Fun wfun 6351  cfv 6357  2c2 11695  chash 13693  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834  UHGraphcuhgr 26843  UMGraphcumgr 26868   SubGraph csubgr 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-umgr 26870  df-subgr 27052
This theorem is referenced by:  subumgr  27072  subusgr  27073
  Copyright terms: Public domain W3C validator