MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncmp Structured version   Visualization version   GIF version

Theorem uncmp 21125
Description: The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.)
Hypothesis
Ref Expression
uncmp.1 𝑋 = 𝐽
Assertion
Ref Expression
uncmp (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ ((𝐽t 𝑆) ∈ Comp ∧ (𝐽t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp)

Proof of Theorem uncmp
Dummy variables 𝑐 𝑑 𝑚 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 789 . 2 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ ((𝐽t 𝑆) ∈ Comp ∧ (𝐽t 𝑇) ∈ Comp)) → 𝐽 ∈ Top)
2 simpll 789 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → 𝐽 ∈ Top)
3 ssun1 3759 . . . . . . . . . 10 𝑆 ⊆ (𝑆𝑇)
4 sseq2 3611 . . . . . . . . . 10 (𝑋 = (𝑆𝑇) → (𝑆𝑋𝑆 ⊆ (𝑆𝑇)))
53, 4mpbiri 248 . . . . . . . . 9 (𝑋 = (𝑆𝑇) → 𝑆𝑋)
65ad2antlr 762 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → 𝑆𝑋)
7 uncmp.1 . . . . . . . . 9 𝑋 = 𝐽
87cmpsub 21122 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑚 ∈ 𝒫 𝐽(𝑆 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 𝑛)))
92, 6, 8syl2anc 692 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑚 ∈ 𝒫 𝐽(𝑆 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 𝑛)))
10 simprr 795 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → 𝑋 = 𝑐)
116, 10sseqtrd 3625 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → 𝑆 𝑐)
12 unieq 4415 . . . . . . . . . . . 12 (𝑚 = 𝑐 𝑚 = 𝑐)
1312sseq2d 3617 . . . . . . . . . . 11 (𝑚 = 𝑐 → (𝑆 𝑚𝑆 𝑐))
14 pweq 4138 . . . . . . . . . . . . 13 (𝑚 = 𝑐 → 𝒫 𝑚 = 𝒫 𝑐)
1514ineq1d 3796 . . . . . . . . . . . 12 (𝑚 = 𝑐 → (𝒫 𝑚 ∩ Fin) = (𝒫 𝑐 ∩ Fin))
1615rexeqdv 3137 . . . . . . . . . . 11 (𝑚 = 𝑐 → (∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 𝑛 ↔ ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛))
1713, 16imbi12d 334 . . . . . . . . . 10 (𝑚 = 𝑐 → ((𝑆 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 𝑛) ↔ (𝑆 𝑐 → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛)))
1817rspcv 3294 . . . . . . . . 9 (𝑐 ∈ 𝒫 𝐽 → (∀𝑚 ∈ 𝒫 𝐽(𝑆 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 𝑛) → (𝑆 𝑐 → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛)))
1918ad2antrl 763 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → (∀𝑚 ∈ 𝒫 𝐽(𝑆 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 𝑛) → (𝑆 𝑐 → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛)))
2011, 19mpid 44 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → (∀𝑚 ∈ 𝒫 𝐽(𝑆 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 𝑛) → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛))
219, 20sylbid 230 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → ((𝐽t 𝑆) ∈ Comp → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛))
22 ssun2 3760 . . . . . . . . . 10 𝑇 ⊆ (𝑆𝑇)
23 sseq2 3611 . . . . . . . . . 10 (𝑋 = (𝑆𝑇) → (𝑇𝑋𝑇 ⊆ (𝑆𝑇)))
2422, 23mpbiri 248 . . . . . . . . 9 (𝑋 = (𝑆𝑇) → 𝑇𝑋)
2524ad2antlr 762 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → 𝑇𝑋)
267cmpsub 21122 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((𝐽t 𝑇) ∈ Comp ↔ ∀𝑟 ∈ 𝒫 𝐽(𝑇 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 𝑠)))
272, 25, 26syl2anc 692 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → ((𝐽t 𝑇) ∈ Comp ↔ ∀𝑟 ∈ 𝒫 𝐽(𝑇 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 𝑠)))
2825, 10sseqtrd 3625 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → 𝑇 𝑐)
29 unieq 4415 . . . . . . . . . . . 12 (𝑟 = 𝑐 𝑟 = 𝑐)
3029sseq2d 3617 . . . . . . . . . . 11 (𝑟 = 𝑐 → (𝑇 𝑟𝑇 𝑐))
31 pweq 4138 . . . . . . . . . . . . 13 (𝑟 = 𝑐 → 𝒫 𝑟 = 𝒫 𝑐)
3231ineq1d 3796 . . . . . . . . . . . 12 (𝑟 = 𝑐 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑐 ∩ Fin))
3332rexeqdv 3137 . . . . . . . . . . 11 (𝑟 = 𝑐 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠))
3430, 33imbi12d 334 . . . . . . . . . 10 (𝑟 = 𝑐 → ((𝑇 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 𝑠) ↔ (𝑇 𝑐 → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠)))
3534rspcv 3294 . . . . . . . . 9 (𝑐 ∈ 𝒫 𝐽 → (∀𝑟 ∈ 𝒫 𝐽(𝑇 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 𝑠) → (𝑇 𝑐 → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠)))
3635ad2antrl 763 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → (∀𝑟 ∈ 𝒫 𝐽(𝑇 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 𝑠) → (𝑇 𝑐 → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠)))
3728, 36mpid 44 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → (∀𝑟 ∈ 𝒫 𝐽(𝑇 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 𝑠) → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠))
3827, 37sylbid 230 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → ((𝐽t 𝑇) ∈ Comp → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠))
39 reeanv 3100 . . . . . . 7 (∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)(𝑆 𝑛𝑇 𝑠) ↔ (∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠))
40 elin 3779 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝒫 𝑐 ∩ Fin) ↔ (𝑛 ∈ 𝒫 𝑐𝑛 ∈ Fin))
4140simplbi 476 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝒫 𝑐 ∩ Fin) → 𝑛 ∈ 𝒫 𝑐)
4241elpwid 4146 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝒫 𝑐 ∩ Fin) → 𝑛𝑐)
43 elin 3779 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝒫 𝑐 ∩ Fin) ↔ (𝑠 ∈ 𝒫 𝑐𝑠 ∈ Fin))
4443simplbi 476 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (𝒫 𝑐 ∩ Fin) → 𝑠 ∈ 𝒫 𝑐)
4544elpwid 4146 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝒫 𝑐 ∩ Fin) → 𝑠𝑐)
4642, 45anim12i 589 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) → (𝑛𝑐𝑠𝑐))
4746ad2antrl 763 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑛𝑐𝑠𝑐))
48 unss 3770 . . . . . . . . . . . . 13 ((𝑛𝑐𝑠𝑐) ↔ (𝑛𝑠) ⊆ 𝑐)
4947, 48sylib 208 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑛𝑠) ⊆ 𝑐)
5040simprbi 480 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝒫 𝑐 ∩ Fin) → 𝑛 ∈ Fin)
5143simprbi 480 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝒫 𝑐 ∩ Fin) → 𝑠 ∈ Fin)
52 unfi 8178 . . . . . . . . . . . . . 14 ((𝑛 ∈ Fin ∧ 𝑠 ∈ Fin) → (𝑛𝑠) ∈ Fin)
5350, 51, 52syl2an 494 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) → (𝑛𝑠) ∈ Fin)
5453ad2antrl 763 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑛𝑠) ∈ Fin)
5549, 54jca 554 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → ((𝑛𝑠) ⊆ 𝑐 ∧ (𝑛𝑠) ∈ Fin))
56 elin 3779 . . . . . . . . . . . 12 ((𝑛𝑠) ∈ (𝒫 𝑐 ∩ Fin) ↔ ((𝑛𝑠) ∈ 𝒫 𝑐 ∧ (𝑛𝑠) ∈ Fin))
57 vex 3192 . . . . . . . . . . . . . 14 𝑐 ∈ V
5857elpw2 4793 . . . . . . . . . . . . 13 ((𝑛𝑠) ∈ 𝒫 𝑐 ↔ (𝑛𝑠) ⊆ 𝑐)
5958anbi1i 730 . . . . . . . . . . . 12 (((𝑛𝑠) ∈ 𝒫 𝑐 ∧ (𝑛𝑠) ∈ Fin) ↔ ((𝑛𝑠) ⊆ 𝑐 ∧ (𝑛𝑠) ∈ Fin))
6056, 59bitr2i 265 . . . . . . . . . . 11 (((𝑛𝑠) ⊆ 𝑐 ∧ (𝑛𝑠) ∈ Fin) ↔ (𝑛𝑠) ∈ (𝒫 𝑐 ∩ Fin))
6155, 60sylib 208 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑛𝑠) ∈ (𝒫 𝑐 ∩ Fin))
62 simpllr 798 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → 𝑋 = (𝑆𝑇))
63 ssun3 3761 . . . . . . . . . . . . . . . 16 (𝑆 𝑛𝑆 ⊆ ( 𝑛 𝑠))
64 ssun4 3762 . . . . . . . . . . . . . . . 16 (𝑇 𝑠𝑇 ⊆ ( 𝑛 𝑠))
6563, 64anim12i 589 . . . . . . . . . . . . . . 15 ((𝑆 𝑛𝑇 𝑠) → (𝑆 ⊆ ( 𝑛 𝑠) ∧ 𝑇 ⊆ ( 𝑛 𝑠)))
6665ad2antll 764 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑆 ⊆ ( 𝑛 𝑠) ∧ 𝑇 ⊆ ( 𝑛 𝑠)))
67 unss 3770 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ( 𝑛 𝑠) ∧ 𝑇 ⊆ ( 𝑛 𝑠)) ↔ (𝑆𝑇) ⊆ ( 𝑛 𝑠))
6866, 67sylib 208 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑆𝑇) ⊆ ( 𝑛 𝑠))
6962, 68eqsstrd 3623 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → 𝑋 ⊆ ( 𝑛 𝑠))
70 uniun 4427 . . . . . . . . . . . 12 (𝑛𝑠) = ( 𝑛 𝑠)
7169, 70syl6sseqr 3636 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → 𝑋 (𝑛𝑠))
72 elpwi 4145 . . . . . . . . . . . . . . 15 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
7372adantr 481 . . . . . . . . . . . . . 14 ((𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐) → 𝑐𝐽)
7473ad2antlr 762 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → 𝑐𝐽)
7549, 74sstrd 3597 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑛𝑠) ⊆ 𝐽)
76 uniss 4429 . . . . . . . . . . . . 13 ((𝑛𝑠) ⊆ 𝐽 (𝑛𝑠) ⊆ 𝐽)
7776, 7syl6sseqr 3636 . . . . . . . . . . . 12 ((𝑛𝑠) ⊆ 𝐽 (𝑛𝑠) ⊆ 𝑋)
7875, 77syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → (𝑛𝑠) ⊆ 𝑋)
7971, 78eqssd 3604 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → 𝑋 = (𝑛𝑠))
80 unieq 4415 . . . . . . . . . . . 12 (𝑑 = (𝑛𝑠) → 𝑑 = (𝑛𝑠))
8180eqeq2d 2631 . . . . . . . . . . 11 (𝑑 = (𝑛𝑠) → (𝑋 = 𝑑𝑋 = (𝑛𝑠)))
8281rspcev 3298 . . . . . . . . . 10 (((𝑛𝑠) ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = (𝑛𝑠)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
8361, 79, 82syl2anc 692 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 𝑛𝑇 𝑠))) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
8483exp32 630 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) → ((𝑆 𝑛𝑇 𝑠) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
8584rexlimdvv 3031 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → (∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)(𝑆 𝑛𝑇 𝑠) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
8639, 85syl5bir 233 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → ((∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑛 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 𝑠) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
8721, 38, 86syl2and 500 . . . . 5 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐)) → (((𝐽t 𝑆) ∈ Comp ∧ (𝐽t 𝑇) ∈ Comp) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
8887impancom 456 . . . 4 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ ((𝐽t 𝑆) ∈ Comp ∧ (𝐽t 𝑇) ∈ Comp)) → ((𝑐 ∈ 𝒫 𝐽𝑋 = 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
8988expd 452 . . 3 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ ((𝐽t 𝑆) ∈ Comp ∧ (𝐽t 𝑇) ∈ Comp)) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
9089ralrimiv 2960 . 2 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ ((𝐽t 𝑆) ∈ Comp ∧ (𝐽t 𝑇) ∈ Comp)) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
917iscmp 21110 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
921, 90, 91sylanbrc 697 1 (((𝐽 ∈ Top ∧ 𝑋 = (𝑆𝑇)) ∧ ((𝐽t 𝑆) ∈ Comp ∧ (𝐽t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cun 3557  cin 3558  wss 3559  𝒫 cpw 4135   cuni 4407  (class class class)co 6610  Fincfn 7906  t crest 16009  Topctop 20626  Compccmp 21108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-fin 7910  df-fi 8268  df-rest 16011  df-topgen 16032  df-top 20627  df-topon 20644  df-bases 20670  df-cmp 21109
This theorem is referenced by:  fiuncmp  21126
  Copyright terms: Public domain W3C validator