MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcld Structured version   Visualization version   GIF version

Theorem cmpcld 22010
Description: A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.)
Assertion
Ref Expression
cmpcld ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽t 𝑆) ∈ Comp)

Proof of Theorem cmpcld
Dummy variables 𝑡 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velpw 4544 . . . 4 (𝑠 ∈ 𝒫 𝐽𝑠𝐽)
2 simp1l 1193 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ∈ Comp)
3 simp2 1133 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑠𝐽)
4 eqid 2821 . . . . . . . . . . . 12 𝐽 = 𝐽
54cldopn 21639 . . . . . . . . . . 11 (𝑆 ∈ (Clsd‘𝐽) → ( 𝐽𝑆) ∈ 𝐽)
65adantl 484 . . . . . . . . . 10 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽𝑆) ∈ 𝐽)
763ad2ant1 1129 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝐽𝑆) ∈ 𝐽)
87snssd 4742 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → {( 𝐽𝑆)} ⊆ 𝐽)
93, 8unssd 4162 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑠 ∪ {( 𝐽𝑆)}) ⊆ 𝐽)
10 simp3 1134 . . . . . . . . . . . . 13 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑆 𝑠)
11 uniss 4846 . . . . . . . . . . . . . 14 (𝑠𝐽 𝑠 𝐽)
12113ad2ant2 1130 . . . . . . . . . . . . 13 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑠 𝐽)
1310, 12sstrd 3977 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑆 𝐽)
14 undif 4430 . . . . . . . . . . . 12 (𝑆 𝐽 ↔ (𝑆 ∪ ( 𝐽𝑆)) = 𝐽)
1513, 14sylib 220 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑆 ∪ ( 𝐽𝑆)) = 𝐽)
16 unss1 4155 . . . . . . . . . . . 12 (𝑆 𝑠 → (𝑆 ∪ ( 𝐽𝑆)) ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
17163ad2ant3 1131 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑆 ∪ ( 𝐽𝑆)) ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
1815, 17eqsstrrd 4006 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
19 difss 4108 . . . . . . . . . . 11 ( 𝐽𝑆) ⊆ 𝐽
20 unss 4160 . . . . . . . . . . 11 (( 𝑠 𝐽 ∧ ( 𝐽𝑆) ⊆ 𝐽) ↔ ( 𝑠 ∪ ( 𝐽𝑆)) ⊆ 𝐽)
2112, 19, 20sylanblc 591 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝑠 ∪ ( 𝐽𝑆)) ⊆ 𝐽)
2218, 21eqssd 3984 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = ( 𝑠 ∪ ( 𝐽𝑆)))
23 uniexg 7466 . . . . . . . . . . . . 13 (𝐽 ∈ Comp → 𝐽 ∈ V)
2423ad2antrr 724 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽) → 𝐽 ∈ V)
25243adant3 1128 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ∈ V)
26 difexg 5231 . . . . . . . . . . 11 ( 𝐽 ∈ V → ( 𝐽𝑆) ∈ V)
27 unisng 4857 . . . . . . . . . . 11 (( 𝐽𝑆) ∈ V → {( 𝐽𝑆)} = ( 𝐽𝑆))
2825, 26, 273syl 18 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → {( 𝐽𝑆)} = ( 𝐽𝑆))
2928uneq2d 4139 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝑠 {( 𝐽𝑆)}) = ( 𝑠 ∪ ( 𝐽𝑆)))
3022, 29eqtr4d 2859 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = ( 𝑠 {( 𝐽𝑆)}))
31 uniun 4861 . . . . . . . 8 (𝑠 ∪ {( 𝐽𝑆)}) = ( 𝑠 {( 𝐽𝑆)})
3230, 31syl6eqr 2874 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = (𝑠 ∪ {( 𝐽𝑆)}))
334cmpcov 21997 . . . . . . 7 ((𝐽 ∈ Comp ∧ (𝑠 ∪ {( 𝐽𝑆)}) ⊆ 𝐽 𝐽 = (𝑠 ∪ {( 𝐽𝑆)})) → ∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢)
342, 9, 32, 33syl3anc 1367 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢)
35 elfpw 8826 . . . . . . . 8 (𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) ↔ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin))
36 simp2l 1195 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}))
37 uncom 4129 . . . . . . . . . . . 12 (𝑠 ∪ {( 𝐽𝑆)}) = ({( 𝐽𝑆)} ∪ 𝑠)
3836, 37sseqtrdi 4017 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑢 ⊆ ({( 𝐽𝑆)} ∪ 𝑠))
39 ssundif 4433 . . . . . . . . . . 11 (𝑢 ⊆ ({( 𝐽𝑆)} ∪ 𝑠) ↔ (𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠)
4038, 39sylib 220 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠)
41 diffi 8750 . . . . . . . . . . . 12 (𝑢 ∈ Fin → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
4241ad2antll 727 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin)) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
43423adant3 1128 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
44 elfpw 8826 . . . . . . . . . 10 ((𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin) ↔ ((𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠 ∧ (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin))
4540, 43, 44sylanbrc 585 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin))
46103ad2ant1 1129 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 𝑠)
47123ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑠 𝐽)
48 simp3 1134 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝐽 = 𝑢)
4947, 48sseqtrd 4007 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑠 𝑢)
5046, 49sstrd 3977 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 𝑢)
5150sselda 3967 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → 𝑣 𝑢)
52 eluni 4841 . . . . . . . . . . . . . 14 (𝑣 𝑢 ↔ ∃𝑤(𝑣𝑤𝑤𝑢))
5351, 52sylib 220 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ∃𝑤(𝑣𝑤𝑤𝑢))
54 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑣𝑤𝑤𝑢) → 𝑣𝑤)
5554a1i 11 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑣𝑤))
56 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑤𝑤𝑢) → 𝑤𝑢)
5756a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑤𝑢))
58 elndif 4105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣𝑆 → ¬ 𝑣 ∈ ( 𝐽𝑆))
5958ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → ¬ 𝑣 ∈ ( 𝐽𝑆))
60 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆)))
6160biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆)))
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑣𝑤 → (𝑤 = ( 𝐽𝑆) → 𝑣 ∈ ( 𝐽𝑆))))
6463imp 409 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → (𝑤 = ( 𝐽𝑆) → 𝑣 ∈ ( 𝐽𝑆)))
6559, 64mtod 200 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → ¬ 𝑤 = ( 𝐽𝑆))
6665ex 415 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑣𝑤 → ¬ 𝑤 = ( 𝐽𝑆)))
6766adantrd 494 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → ¬ 𝑤 = ( 𝐽𝑆)))
68 velsn 4583 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ {( 𝐽𝑆)} ↔ 𝑤 = ( 𝐽𝑆))
6968notbii 322 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ {( 𝐽𝑆)} ↔ ¬ 𝑤 = ( 𝐽𝑆))
7067, 69syl6ibr 254 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → ¬ 𝑤 ∈ {( 𝐽𝑆)}))
7157, 70jcad 515 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → (𝑤𝑢 ∧ ¬ 𝑤 ∈ {( 𝐽𝑆)})))
72 eldif 3946 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}) ↔ (𝑤𝑢 ∧ ¬ 𝑤 ∈ {( 𝐽𝑆)}))
7371, 72syl6ibr 254 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7455, 73jcad 515 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → (𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
7574eximdv 1918 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (∃𝑤(𝑣𝑤𝑤𝑢) → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
7653, 75mpd 15 . . . . . . . . . . . 12 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7776ex 415 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑣𝑆 → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
78 eluni 4841 . . . . . . . . . . 11 (𝑣 (𝑢 ∖ {( 𝐽𝑆)}) ↔ ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7977, 78syl6ibr 254 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑣𝑆𝑣 (𝑢 ∖ {( 𝐽𝑆)})))
8079ssrdv 3973 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 (𝑢 ∖ {( 𝐽𝑆)}))
81 unieq 4849 . . . . . . . . . . 11 (𝑡 = (𝑢 ∖ {( 𝐽𝑆)}) → 𝑡 = (𝑢 ∖ {( 𝐽𝑆)}))
8281sseq2d 3999 . . . . . . . . . 10 (𝑡 = (𝑢 ∖ {( 𝐽𝑆)}) → (𝑆 𝑡𝑆 (𝑢 ∖ {( 𝐽𝑆)})))
8382rspcev 3623 . . . . . . . . 9 (((𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑆 (𝑢 ∖ {( 𝐽𝑆)})) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8445, 80, 83syl2anc 586 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8535, 84syl3an2b 1400 . . . . . . 7 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ 𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) ∧ 𝐽 = 𝑢) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8685rexlimdv3a 3286 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡))
8734, 86mpd 15 . . . . 5 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
88873exp 1115 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑠𝐽 → (𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
891, 88syl5bi 244 . . 3 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑠 ∈ 𝒫 𝐽 → (𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9089ralrimiv 3181 . 2 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡))
91 cmptop 22003 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
924cldss 21637 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
934cmpsub 22008 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9491, 92, 93syl2an 597 . 2 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9590, 94mpbird 259 1 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽t 𝑆) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  𝒫 cpw 4539  {csn 4567   cuni 4838  cfv 6355  (class class class)co 7156  Fincfn 8509  t crest 16694  Topctop 21501  Clsdccld 21624  Compccmp 21994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-fin 8513  df-fi 8875  df-rest 16696  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-cmp 21995
This theorem is referenced by:  hausllycmp  22102  cldllycmp  22103  txkgen  22260  cmphaushmeo  22408  cnheiborlem  23558  cmpcmet  23922  stoweidlem28  42333  stoweidlem50  42355  stoweidlem57  42362
  Copyright terms: Public domain W3C validator