MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem15 Structured version   Visualization version   GIF version

Theorem wfrlem15 7969
Description: Lemma for well-founded recursion. When 𝑧 is 𝑅 minimal, 𝐶 is an acceptable function. This step is where the Axiom of Replacement becomes required. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem15 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐹,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem15
StepHypRef Expression
1 wfrlem13.1 . . . . 5 𝑅 We 𝐴
2 wfrlem13.2 . . . . 5 𝑅 Se 𝐴
3 wfrlem13.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13.4 . . . . 5 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13 7967 . . . 4 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
65adantr 483 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
71, 3wfrlem10 7964 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
8 eldifi 4103 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
9 setlikespec 6169 . . . . . 6 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
108, 2, 9sylancl 588 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
1110adantr 483 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
127, 11eqeltrrd 2914 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐹 ∈ V)
13 snex 5332 . . . . 5 {𝑧} ∈ V
14 unexg 7472 . . . . 5 ((dom 𝐹 ∈ V ∧ {𝑧} ∈ V) → (dom 𝐹 ∪ {𝑧}) ∈ V)
1513, 14mpan2 689 . . . 4 (dom 𝐹 ∈ V → (dom 𝐹 ∪ {𝑧}) ∈ V)
16 fnex 6980 . . . 4 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ (dom 𝐹 ∪ {𝑧}) ∈ V) → 𝐶 ∈ V)
1715, 16sylan2 594 . . 3 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ dom 𝐹 ∈ V) → 𝐶 ∈ V)
186, 12, 17syl2anc 586 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ V)
1912, 13, 14sylancl 588 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ∈ V)
203wfrdmss 7961 . . . . . . 7 dom 𝐹𝐴
218snssd 4742 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → {𝑧} ⊆ 𝐴)
22 unss 4160 . . . . . . . 8 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2322biimpi 218 . . . . . . 7 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2420, 21, 23sylancr 589 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2524adantr 483 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
26 elun 4125 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
27 velsn 4583 . . . . . . . . 9 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
2827orbi2i 909 . . . . . . . 8 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
2926, 28bitri 277 . . . . . . 7 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
303wfrdmcl 7963 . . . . . . . . . 10 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
31 ssun3 4150 . . . . . . . . . 10 (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
3230, 31syl 17 . . . . . . . . 9 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
3332a1i 11 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
34 ssun1 4148 . . . . . . . . . 10 dom 𝐹 ⊆ (dom 𝐹 ∪ {𝑧})
357, 34eqsstrdi 4021 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧}))
36 predeq3 6152 . . . . . . . . . 10 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
3736sseq1d 3998 . . . . . . . . 9 (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧})))
3835, 37syl5ibrcom 249 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
3933, 38jaod 855 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4029, 39syl5bi 244 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4140ralrimiv 3181 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
4225, 41jca 514 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
431, 2, 3, 4wfrlem14 7968 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4443ralrimiv 3181 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
4544adantr 483 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
466, 42, 453jca 1124 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
47 fneq2 6445 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝐶 Fn 𝑥𝐶 Fn (dom 𝐹 ∪ {𝑧})))
48 sseq1 3992 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝑥𝐴 ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴))
49 sseq2 3993 . . . . . 6 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
5049raleqbi1dv 3403 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
5148, 50anbi12d 632 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))))
52 raleq 3405 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5347, 51, 523anbi123d 1432 . . 3 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5419, 46, 53spcedv 3599 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
55 fneq1 6444 . . . 4 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
56 fveq1 6669 . . . . . 6 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
57 reseq1 5847 . . . . . . 7 (𝑓 = 𝐶 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))
5857fveq2d 6674 . . . . . 6 (𝑓 = 𝐶 → (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
5956, 58eqeq12d 2837 . . . . 5 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6059ralbidv 3197 . . . 4 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6155, 603anbi13d 1434 . . 3 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6261exbidv 1922 . 2 (𝑓 = 𝐶 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6318, 54, 62elabd 3669 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  Vcvv 3494  cdif 3933  cun 3934  wss 3936  c0 4291  {csn 4567  cop 4573   Se wse 5512   We wwe 5513  dom cdm 5555  cres 5557  Predcpred 6147   Fn wfn 6350  cfv 6355  wrecscwrecs 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-wrecs 7947
This theorem is referenced by:  wfrlem16  7970
  Copyright terms: Public domain W3C validator