MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadd4d Structured version   Visualization version   GIF version

Theorem xadd4d 12076
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 10208. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
xadd4d.2 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
xadd4d.3 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
xadd4d.4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
Assertion
Ref Expression
xadd4d (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
2 xadd4d.2 . . . 4 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
3 xadd4d.4 . . . 4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
4 xaddass 12022 . . . 4 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
51, 2, 3, 4syl3anc 1323 . . 3 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
65oveq2d 6620 . 2 (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
7 xadd4d.1 . . . 4 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
81simpld 475 . . . . 5 (𝜑𝐶 ∈ ℝ*)
93simpld 475 . . . . 5 (𝜑𝐷 ∈ ℝ*)
108, 9xaddcld 12074 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*)
11 xaddnemnf 12010 . . . . 5 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
121, 3, 11syl2anc 692 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞)
13 xaddass 12022 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
147, 2, 10, 12, 13syl112anc 1327 . . 3 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
152simpld 475 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
16 xaddcom 12014 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
178, 15, 16syl2anc 692 . . . . . 6 (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
1817oveq1d 6619 . . . . 5 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷))
19 xaddass 12022 . . . . . 6 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
202, 1, 3, 19syl3anc 1323 . . . . 5 (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
2118, 20eqtr2d 2656 . . . 4 (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷))
2221oveq2d 6620 . . 3 (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2314, 22eqtrd 2655 . 2 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2415, 9xaddcld 12074 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*)
25 xaddnemnf 12010 . . . 4 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞)
262, 3, 25syl2anc 692 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞)
27 xaddass 12022 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
287, 1, 24, 26, 27syl112anc 1327 . 2 (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
296, 23, 283eqtr4d 2665 1 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  (class class class)co 6604  -∞cmnf 10016  *cxr 10017   +𝑒 cxad 11888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-xadd 11891
This theorem is referenced by:  xnn0add4d  12077
  Copyright terms: Public domain W3C validator