MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoopn Structured version   Visualization version   GIF version

Theorem xkoopn 22199
Description: A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoopn.x 𝑋 = 𝑅
xkoopn.r (𝜑𝑅 ∈ Top)
xkoopn.s (𝜑𝑆 ∈ Top)
xkoopn.a (𝜑𝐴𝑋)
xkoopn.c (𝜑 → (𝑅t 𝐴) ∈ Comp)
xkoopn.u (𝜑𝑈𝑆)
Assertion
Ref Expression
xkoopn (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (𝑆ko 𝑅))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑋(𝑓)

Proof of Theorem xkoopn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7191 . . . . . . 7 (𝑅 Cn 𝑆) ∈ V
21pwex 5283 . . . . . 6 𝒫 (𝑅 Cn 𝑆) ∈ V
3 xkoopn.x . . . . . . . 8 𝑋 = 𝑅
4 eqid 2823 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
5 eqid 2823 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
63, 4, 5xkotf 22195 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
7 frn 6522 . . . . . . 7 ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
86, 7ax-mp 5 . . . . . 6 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
92, 8ssexi 5228 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
10 ssfii 8885 . . . . 5 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
119, 10ax-mp 5 . . . 4 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
12 fvex 6685 . . . . 5 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V
13 bastg 21576 . . . . 5 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
1412, 13ax-mp 5 . . . 4 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
1511, 14sstri 3978 . . 3 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
16 oveq2 7166 . . . . . . 7 (𝑥 = 𝐴 → (𝑅t 𝑥) = (𝑅t 𝐴))
1716eleq1d 2899 . . . . . 6 (𝑥 = 𝐴 → ((𝑅t 𝑥) ∈ Comp ↔ (𝑅t 𝐴) ∈ Comp))
18 xkoopn.a . . . . . . 7 (𝜑𝐴𝑋)
19 xkoopn.r . . . . . . . 8 (𝜑𝑅 ∈ Top)
203topopn 21516 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
21 elpw2g 5249 . . . . . . . 8 (𝑋𝑅 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
2219, 20, 213syl 18 . . . . . . 7 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
2318, 22mpbird 259 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝑋)
24 xkoopn.c . . . . . 6 (𝜑 → (𝑅t 𝐴) ∈ Comp)
2517, 23, 24elrabd 3684 . . . . 5 (𝜑𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp})
26 xkoopn.u . . . . 5 (𝜑𝑈𝑆)
27 eqidd 2824 . . . . 5 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈})
28 imaeq2 5927 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑓𝑘) = (𝑓𝐴))
2928sseq1d 4000 . . . . . . . 8 (𝑘 = 𝐴 → ((𝑓𝑘) ⊆ 𝑣 ↔ (𝑓𝐴) ⊆ 𝑣))
3029rabbidv 3482 . . . . . . 7 (𝑘 = 𝐴 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣})
3130eqeq2d 2834 . . . . . 6 (𝑘 = 𝐴 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣}))
32 sseq2 3995 . . . . . . . 8 (𝑣 = 𝑈 → ((𝑓𝐴) ⊆ 𝑣 ↔ (𝑓𝐴) ⊆ 𝑈))
3332rabbidv 3482 . . . . . . 7 (𝑣 = 𝑈 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈})
3433eqeq2d 2834 . . . . . 6 (𝑣 = 𝑈 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈}))
3531, 34rspc2ev 3637 . . . . 5 ((𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} ∧ 𝑈𝑆 ∧ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈}) → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
3625, 26, 27, 35syl3anc 1367 . . . 4 (𝜑 → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
371rabex 5237 . . . . 5 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ V
38 eqeq1 2827 . . . . . 6 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
39382rexbidv 3302 . . . . 5 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} → (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
405rnmpo 7286 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
4137, 39, 40elab2 3672 . . . 4 ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
4236, 41sylibr 236 . . 3 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4315, 42sseldi 3967 . 2 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
44 xkoopn.s . . 3 (𝜑𝑆 ∈ Top)
453, 4, 5xkoval 22197 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
4619, 44, 45syl2anc 586 . 2 (𝜑 → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
4743, 46eleqtrrd 2918 1 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (𝑆ko 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  Vcvv 3496  wss 3938  𝒫 cpw 4541   cuni 4840   × cxp 5555  ran crn 5558  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  ficfi 8876  t crest 16696  topGenctg 16713  Topctop 21503   Cn ccn 21834  Compccmp 21996  ko cxko 22171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-1o 8104  df-en 8512  df-fin 8515  df-fi 8877  df-topgen 16719  df-top 21504  df-xko 22173
This theorem is referenced by:  xkouni  22209  xkohaus  22263  xkoptsub  22264  xkoco1cn  22267  xkoco2cn  22268  xkococnlem  22269
  Copyright terms: Public domain W3C validator