MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkouni Structured version   Visualization version   GIF version

Theorem xkouni 21312
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
xkouni.1 𝐽 = (𝑆 ^ko 𝑅)
Assertion
Ref Expression
xkouni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)

Proof of Theorem xkouni
Dummy variables 𝑓 𝑘 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 5440 . . . . . . . . 9 (𝑓 “ ∅) = ∅
2 0ss 3944 . . . . . . . . 9 ∅ ⊆ 𝑆
31, 2eqsstri 3614 . . . . . . . 8 (𝑓 “ ∅) ⊆ 𝑆
43a1i 11 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (𝑓 “ ∅) ⊆ 𝑆)
54ralrimiva 2960 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
6 rabid2 3107 . . . . . 6 ((𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ↔ ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
75, 6sylibr 224 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆})
8 eqid 2621 . . . . . 6 𝑅 = 𝑅
9 simpl 473 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top)
10 simpr 477 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
11 0ss 3944 . . . . . . 7 ∅ ⊆ 𝑅
1211a1i 11 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∅ ⊆ 𝑅)
13 rest0 20883 . . . . . . . 8 (𝑅 ∈ Top → (𝑅t ∅) = {∅})
1413adantr 481 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) = {∅})
15 0cmp 21107 . . . . . . 7 {∅} ∈ Comp
1614, 15syl6eqel 2706 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) ∈ Comp)
17 eqid 2621 . . . . . . . 8 𝑆 = 𝑆
1817topopn 20636 . . . . . . 7 (𝑆 ∈ Top → 𝑆𝑆)
1918adantl 482 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆𝑆)
208, 9, 10, 12, 16, 19xkoopn 21302 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ∈ (𝑆 ^ko 𝑅))
217, 20eqeltrd 2698 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
22 xkouni.1 . . . 4 𝐽 = (𝑆 ^ko 𝑅)
2321, 22syl6eleqr 2709 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ 𝐽)
24 elssuni 4433 . . 3 ((𝑅 Cn 𝑆) ∈ 𝐽 → (𝑅 Cn 𝑆) ⊆ 𝐽)
2523, 24syl 17 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ 𝐽)
26 eqid 2621 . . . . . 6 {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}
27 eqid 2621 . . . . . 6 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
288, 26, 27xkoval 21300 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
2928unieqd 4412 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
3022unieqi 4411 . . . 4 𝐽 = (𝑆 ^ko 𝑅)
31 ovex 6632 . . . . . . . 8 (𝑅 Cn 𝑆) ∈ V
3231pwex 4808 . . . . . . 7 𝒫 (𝑅 Cn 𝑆) ∈ V
338, 26, 27xkotf 21298 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
34 frn 6010 . . . . . . . 8 ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
3533, 34ax-mp 5 . . . . . . 7 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
3632, 35ssexi 4763 . . . . . 6 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
37 fiuni 8278 . . . . . 6 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
3836, 37ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
39 fvex 6158 . . . . . 6 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V
40 unitg 20682 . . . . . 6 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4139, 40ax-mp 5 . . . . 5 (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4238, 41eqtr4i 2646 . . . 4 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4329, 30, 423eqtr4g 2680 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 = ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4435a1i 11 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
45 sspwuni 4577 . . . 4 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) ↔ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4644, 45sylib 208 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4743, 46eqsstrd 3618 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ⊆ (𝑅 Cn 𝑆))
4825, 47eqssd 3600 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3186  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148   cuni 4402   × cxp 5072  ran crn 5075  cima 5077  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  ficfi 8260  t crest 16002  topGenctg 16019  Topctop 20617   Cn ccn 20938  Compccmp 21099   ^ko cxko 21274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-fin 7903  df-fi 8261  df-rest 16004  df-topgen 16025  df-top 20621  df-bases 20622  df-topon 20623  df-cmp 21100  df-xko 21276
This theorem is referenced by:  xkotopon  21313  xkohaus  21366  xkoptsub  21367
  Copyright terms: Public domain W3C validator