![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xkotopon | Structured version Visualization version GIF version |
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
xkouni.1 | ⊢ 𝐽 = (𝑆 ^ko 𝑅) |
Ref | Expression |
---|---|
xkotopon | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xkouni.1 | . . 3 ⊢ 𝐽 = (𝑆 ^ko 𝑅) | |
2 | xkotop 21591 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ Top) | |
3 | 1, 2 | syl5eqel 2841 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ Top) |
4 | 1 | xkouni 21602 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) |
5 | istopon 20917 | . 2 ⊢ (𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑅 Cn 𝑆) = ∪ 𝐽)) | |
6 | 3, 4, 5 | sylanbrc 701 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∪ cuni 4586 ‘cfv 6047 (class class class)co 6811 Topctop 20898 TopOnctopon 20915 Cn ccn 21228 ^ko cxko 21564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-en 8120 df-fin 8123 df-fi 8480 df-rest 16283 df-topgen 16304 df-top 20899 df-topon 20916 df-bases 20950 df-cmp 21390 df-xko 21566 |
This theorem is referenced by: xkoccn 21622 xkopjcn 21659 xkoco1cn 21660 xkoco2cn 21661 xkococn 21663 cnmptkp 21683 cnmptk1 21684 cnmpt1k 21685 cnmptkk 21686 xkofvcn 21687 cnmptk1p 21688 cnmptk2 21689 xkoinjcn 21690 xkocnv 21817 xkohmeo 21818 symgtgp 22104 |
Copyright terms: Public domain | W3C validator |