Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf 42144
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf.1 𝑗𝐹
xlimpnfxnegmnf.2 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem xlimpnfxnegmnf
Dummy variables 𝑖 𝑙 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5069 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
21rexralbidv 3301 . . . . 5 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗)))
3 fveq2 6670 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
43raleqdv 3415 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗)))
5 nfv 1915 . . . . . . . 8 𝑙 𝑦 ≤ (𝐹𝑗)
6 nfcv 2977 . . . . . . . . 9 𝑗𝑦
7 nfcv 2977 . . . . . . . . 9 𝑗
8 xlimpnfxnegmnf.1 . . . . . . . . . 10 𝑗𝐹
9 nfcv 2977 . . . . . . . . . 10 𝑗𝑙
108, 9nffv 6680 . . . . . . . . 9 𝑗(𝐹𝑙)
116, 7, 10nfbr 5113 . . . . . . . 8 𝑗 𝑦 ≤ (𝐹𝑙)
12 fveq2 6670 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1312breq2d 5078 . . . . . . . 8 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
145, 11, 13cbvralw 3441 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
154, 14syl6bb 289 . . . . . 6 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1615cbvrexvw 3450 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
172, 16syl6bb 289 . . . 4 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1817cbvralvw 3449 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
1918a1i 11 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
20 simpll 765 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝜑)
21 simpr 487 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
22 xnegrecl 41761 . . . . . . 7 (𝑤 ∈ ℝ → -𝑒𝑤 ∈ ℝ)
23 simpl 485 . . . . . . 7 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
24 breq1 5069 . . . . . . . . 9 (𝑦 = -𝑒𝑤 → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒𝑤 ≤ (𝐹𝑙)))
2524rexralbidv 3301 . . . . . . . 8 (𝑦 = -𝑒𝑤 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)))
2625rspcva 3621 . . . . . . 7 ((-𝑒𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2722, 23, 26syl2an2 684 . . . . . 6 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2827adantll 712 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
29 simpll 765 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑤 ∈ ℝ))
30 xlimpnfxnegmnf.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
3130uztrn2 12263 . . . . . . . . . 10 ((𝑖𝑍𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
3231adantll 712 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
33 rexr 10687 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
3433ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → 𝑤 ∈ ℝ*)
35 xlimpnfxnegmnf.3 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
3635ffvelrnda 6851 . . . . . . . . . . . 12 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
3736adantlr 713 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
38 xlenegcon1 41812 . . . . . . . . . . 11 ((𝑤 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
3934, 37, 38syl2anc 586 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
4039biimpd 231 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4129, 32, 40syl2anc 586 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4241ralimdva 3177 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4342reximdva 3274 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4443imp 409 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4520, 21, 28, 44syl21anc 835 . . . 4 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4645ralrimiva 3182 . . 3 ((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
47 simpll 765 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝜑)
48 simpr 487 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
49 xnegrecl 41761 . . . . . . 7 (𝑦 ∈ ℝ → -𝑒𝑦 ∈ ℝ)
50 simpl 485 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
51 breq2 5070 . . . . . . . . 9 (𝑤 = -𝑒𝑦 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5251rexralbidv 3301 . . . . . . . 8 (𝑤 = -𝑒𝑦 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5352rspcva 3621 . . . . . . 7 ((-𝑒𝑦 ∈ ℝ ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5449, 50, 53syl2an2 684 . . . . . 6 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5554adantll 712 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
56 simpll 765 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑦 ∈ ℝ))
5731adantll 712 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
58 rexr 10687 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5958ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → 𝑦 ∈ ℝ*)
6036adantlr 713 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
61 xleneg 12612 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6259, 60, 61syl2anc 586 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6362biimprd 250 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6456, 57, 63syl2anc 586 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6564ralimdva 3177 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6665reximdva 3274 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6766imp 409 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6847, 48, 55, 67syl21anc 835 . . . 4 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6968ralrimiva 3182 . . 3 ((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
7046, 69impbida 799 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
71 breq2 5070 . . . . . 6 (𝑤 = 𝑥 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ 𝑥))
7271rexralbidv 3301 . . . . 5 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥))
73 fveq2 6670 . . . . . . . 8 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
7473raleqdv 3415 . . . . . . 7 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥))
7510nfxneg 41786 . . . . . . . . 9 𝑗-𝑒(𝐹𝑙)
76 nfcv 2977 . . . . . . . . 9 𝑗𝑥
7775, 7, 76nfbr 5113 . . . . . . . 8 𝑗-𝑒(𝐹𝑙) ≤ 𝑥
78 nfv 1915 . . . . . . . 8 𝑙-𝑒(𝐹𝑗) ≤ 𝑥
79 fveq2 6670 . . . . . . . . . 10 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
8079xnegeqd 41760 . . . . . . . . 9 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
8180breq1d 5076 . . . . . . . 8 (𝑙 = 𝑗 → (-𝑒(𝐹𝑙) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
8277, 78, 81cbvralw 3441 . . . . . . 7 (∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8374, 82syl6bb 289 . . . . . 6 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8483cbvrexvw 3450 . . . . 5 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8572, 84syl6bb 289 . . . 4 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8685cbvralvw 3449 . . 3 (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8786a1i 11 . 2 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8819, 70, 873bitrd 307 1 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wnfc 2961  wral 3138  wrex 3139   class class class wbr 5066  wf 6351  cfv 6355  cr 10536  *cxr 10674  cle 10676  cuz 12244  -𝑒cxne 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-z 11983  df-uz 12245  df-xneg 12508
This theorem is referenced by:  liminfpnfuz  42146  xlimpnfxnegmnf2  42188
  Copyright terms: Public domain W3C validator