Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfpnfuz Structured version   Visualization version   GIF version

Theorem liminfpnfuz 42146
Description: The inferior limit of a function is +∞ if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminfpnfuz.1 𝑗𝐹
liminfpnfuz.2 (𝜑𝑀 ∈ ℤ)
liminfpnfuz.3 𝑍 = (ℤ𝑀)
liminfpnfuz.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfpnfuz (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfpnfuz
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑙𝜑
2 nfcv 2977 . . . . 5 𝑙𝐹
3 liminfpnfuz.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfpnfuz.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfpnfuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 4, 5liminfvaluz3 42126 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))))
7 liminfpnfuz.1 . . . . . . . . 9 𝑗𝐹
8 nfcv 2977 . . . . . . . . 9 𝑗𝑙
97, 8nffv 6680 . . . . . . . 8 𝑗(𝐹𝑙)
109nfxneg 41786 . . . . . . 7 𝑗-𝑒(𝐹𝑙)
11 nfcv 2977 . . . . . . 7 𝑙-𝑒(𝐹𝑗)
12 fveq2 6670 . . . . . . . 8 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1312xnegeqd 41760 . . . . . . 7 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
1410, 11, 13cbvmpt 5167 . . . . . 6 (𝑙𝑍 ↦ -𝑒(𝐹𝑙)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗))
1514fveq2i 6673 . . . . 5 (lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
1615xnegeqi 41763 . . . 4 -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
176, 16syl6eq 2872 . . 3 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
1817eqeq1d 2823 . 2 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞))
19 xnegmnf 12604 . . . . . 6 -𝑒-∞ = +∞
2019eqcomi 2830 . . . . 5 +∞ = -𝑒-∞
2120a1i 11 . . . 4 (𝜑 → +∞ = -𝑒-∞)
2221eqeq2d 2832 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞))
234fvexi 6684 . . . . . . 7 𝑍 ∈ V
2423mptex 6986 . . . . . 6 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
2625limsupcld 42020 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
27 mnfxr 10698 . . . 4 -∞ ∈ ℝ*
28 xneg11 12609 . . . 4 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
2926, 27, 28sylancl 588 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
3022, 29bitrd 281 . 2 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
314uztrn2 12263 . . . . . . . . 9 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
32 xnegex 12602 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
33 fvmpt4 41557 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3431, 32, 33sylancl 588 . . . . . . . 8 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3534breq1d 5076 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
3635ralbidva 3196 . . . . . 6 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
3736rexbiia 3246 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3837ralbii 3165 . . . 4 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
40 nfmpt1 5164 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
415ffvelrnda 6851 . . . . . 6 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
4241xnegcld 12694 . . . . 5 ((𝜑𝑙𝑍) → -𝑒(𝐹𝑙) ∈ ℝ*)
4314eqcomi 2830 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑙𝑍 ↦ -𝑒(𝐹𝑙))
4442, 43fmptd 6878 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
4540, 3, 4, 44limsupmnfuz 42057 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
467, 4, 5xlimpnfxnegmnf 42144 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
4739, 45, 463bitr4d 313 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
4818, 30, 473bitrd 307 1 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wnfc 2961  wral 3138  wrex 3139  Vcvv 3494   class class class wbr 5066  cmpt 5146  wf 6351  cfv 6355  cr 10536  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674  cle 10676  cz 11982  cuz 12244  -𝑒cxne 12505  lim supclsp 14827  lim infclsi 42081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-xneg 12508  df-ico 12745  df-fl 13163  df-ceil 13164  df-limsup 14828  df-liminf 42082
This theorem is referenced by:  xlimpnfliminf  42190  xlimpnfliminf2  42191
  Copyright terms: Public domain W3C validator