Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addass Structured version   Visualization version   GIF version

Theorem xrge0addass 30677
Description: Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Assertion
Ref Expression
xrge0addass ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xrge0addass
StepHypRef Expression
1 iccssxr 12820 . . 3 (0[,]+∞) ⊆ ℝ*
2 simp1 1132 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sseldi 3965 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ ℝ*)
4 0xr 10688 . . . . . . 7 0 ∈ ℝ*
54a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ∈ ℝ*)
6 pnfxr 10695 . . . . . . 7 +∞ ∈ ℝ*
76a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → +∞ ∈ ℝ*)
8 elicc4 12804 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
95, 7, 3, 8syl3anc 1367 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
102, 9mpbid 234 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐴𝐴 ≤ +∞))
1110simpld 497 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
12 ge0nemnf 12567 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
133, 11, 12syl2anc 586 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ≠ -∞)
14 simp2 1133 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
151, 14sseldi 3965 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
16 elicc4 12804 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
175, 7, 15, 16syl3anc 1367 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
1814, 17mpbid 234 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐵𝐵 ≤ +∞))
1918simpld 497 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
20 ge0nemnf 12567 . . 3 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → 𝐵 ≠ -∞)
2115, 19, 20syl2anc 586 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ≠ -∞)
22 simp3 1134 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
231, 22sseldi 3965 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ*)
24 elicc4 12804 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
255, 7, 23, 24syl3anc 1367 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
2622, 25mpbid 234 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐶𝐶 ≤ +∞))
2726simpld 497 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐶)
28 ge0nemnf 12567 . . 3 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
2923, 27, 28syl2anc 586 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ≠ -∞)
30 xaddass 12643 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
313, 13, 15, 21, 23, 29, 30syl222anc 1382 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  (class class class)co 7156  0cc0 10537  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674  cle 10676   +𝑒 cxad 12506  [,]cicc 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-addass 10602  ax-i2m1 10605  ax-rnegex 10608  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-xadd 12509  df-icc 12746
This theorem is referenced by:  inelcarsg  31569
  Copyright terms: Public domain W3C validator