ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0dif Unicode version

Theorem 0dif 3373
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
0dif  |-  ( (/)  \  A )  =  (/)

Proof of Theorem 0dif
StepHypRef Expression
1 difss 3141 . 2  |-  ( (/)  \  A )  C_  (/)
2 ss0 3342 . 2  |-  ( (
(/)  \  A )  C_  (/)  ->  ( (/)  \  A
)  =  (/) )
31, 2ax-mp 7 1  |-  ( (/)  \  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1296    \ cdif 3010    C_ wss 3013   (/)c0 3302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-dif 3015  df-in 3019  df-ss 3026  df-nul 3303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator