ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0dif GIF version

Theorem 0dif 3381
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
0dif (∅ ∖ 𝐴) = ∅

Proof of Theorem 0dif
StepHypRef Expression
1 difss 3149 . 2 (∅ ∖ 𝐴) ⊆ ∅
2 ss0 3350 . 2 ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅)
31, 2ax-mp 7 1 (∅ ∖ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1299  cdif 3018  wss 3021  c0 3310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-dif 3023  df-in 3027  df-ss 3034  df-nul 3311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator