| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss0 | Unicode version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3491 |
. 2
| |
| 2 | 1 | biimpi 120 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 |
| This theorem is referenced by: sseq0 3493 abf 3495 eq0rdv 3496 ssdisj 3508 0dif 3523 poirr2 5063 iotanul 5235 f00 5450 map0b 6747 phplem2 6915 php5dom 6925 sbthlem7 7030 fi0 7042 casefun 7152 caseinj 7156 djufun 7171 djuinj 7173 nninfninc 7190 nnnninfeq 7195 exmidomni 7209 ixxdisj 9980 icodisj 10069 ioodisj 10070 uzdisj 10170 nn0disj 10215 fsum2dlemstep 11601 fprodssdc 11757 fprod2dlemstep 11789 ntrcls0 14377 |
| Copyright terms: Public domain | W3C validator |