ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 Unicode version

Theorem ss0 3464
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0  |-  ( A 
C_  (/)  ->  A  =  (/) )

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3463 . 2  |-  ( A 
C_  (/)  <->  A  =  (/) )
21biimpi 120 1  |-  ( A 
C_  (/)  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3130   (/)c0 3423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-nul 3424
This theorem is referenced by:  sseq0  3465  abf  3467  eq0rdv  3468  ssdisj  3480  0dif  3495  poirr2  5022  iotanul  5194  f00  5408  map0b  6687  phplem2  6853  php5dom  6863  sbthlem7  6962  fi0  6974  casefun  7084  caseinj  7088  djufun  7103  djuinj  7105  nnnninfeq  7126  exmidomni  7140  ixxdisj  9903  icodisj  9992  ioodisj  9993  uzdisj  10093  nn0disj  10138  fsum2dlemstep  11442  fprodssdc  11598  fprod2dlemstep  11630  ntrcls0  13634
  Copyright terms: Public domain W3C validator