ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 Unicode version

Theorem ss0 3492
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0  |-  ( A 
C_  (/)  ->  A  =  (/) )

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3491 . 2  |-  ( A 
C_  (/)  <->  A  =  (/) )
21biimpi 120 1  |-  ( A 
C_  (/)  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157   (/)c0 3451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3452
This theorem is referenced by:  sseq0  3493  abf  3495  eq0rdv  3496  ssdisj  3508  0dif  3523  poirr2  5063  iotanul  5235  f00  5450  map0b  6747  phplem2  6915  php5dom  6925  sbthlem7  7030  fi0  7042  casefun  7152  caseinj  7156  djufun  7171  djuinj  7173  nninfninc  7190  nnnninfeq  7195  exmidomni  7209  ixxdisj  9980  icodisj  10069  ioodisj  10070  uzdisj  10170  nn0disj  10215  fsum2dlemstep  11601  fprodssdc  11757  fprod2dlemstep  11789  ntrcls0  14377
  Copyright terms: Public domain W3C validator