| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss0 | Unicode version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3508 |
. 2
| |
| 2 | 1 | biimpi 120 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 |
| This theorem is referenced by: sseq0 3510 abf 3512 eq0rdv 3513 ssdisj 3525 0dif 3540 poirr2 5094 iotanul 5266 f00 5489 map0b 6797 phplem2 6975 php5dom 6985 sbthlem7 7091 fi0 7103 casefun 7213 caseinj 7217 djufun 7232 djuinj 7234 nninfninc 7251 nnnninfeq 7256 exmidomni 7270 ixxdisj 10060 icodisj 10149 ioodisj 10150 uzdisj 10250 nn0disj 10295 swrd0g 11151 fsum2dlemstep 11860 fprodssdc 12016 fprod2dlemstep 12048 ntrcls0 14718 |
| Copyright terms: Public domain | W3C validator |