ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 Unicode version

Theorem ss0 3488
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0  |-  ( A 
C_  (/)  ->  A  =  (/) )

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3487 . 2  |-  ( A 
C_  (/)  <->  A  =  (/) )
21biimpi 120 1  |-  ( A 
C_  (/)  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3154   (/)c0 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-nul 3448
This theorem is referenced by:  sseq0  3489  abf  3491  eq0rdv  3492  ssdisj  3504  0dif  3519  poirr2  5059  iotanul  5231  f00  5446  map0b  6743  phplem2  6911  php5dom  6921  sbthlem7  7024  fi0  7036  casefun  7146  caseinj  7150  djufun  7165  djuinj  7167  nninfninc  7184  nnnninfeq  7189  exmidomni  7203  ixxdisj  9972  icodisj  10061  ioodisj  10062  uzdisj  10162  nn0disj  10207  fsum2dlemstep  11580  fprodssdc  11736  fprod2dlemstep  11768  ntrcls0  14310
  Copyright terms: Public domain W3C validator