![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss0 | Unicode version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 120 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 df-nul 3425 |
This theorem is referenced by: sseq0 3466 abf 3468 eq0rdv 3469 ssdisj 3481 0dif 3496 poirr2 5023 iotanul 5195 f00 5409 map0b 6689 phplem2 6855 php5dom 6865 sbthlem7 6964 fi0 6976 casefun 7086 caseinj 7090 djufun 7105 djuinj 7107 nnnninfeq 7128 exmidomni 7142 ixxdisj 9905 icodisj 9994 ioodisj 9995 uzdisj 10095 nn0disj 10140 fsum2dlemstep 11444 fprodssdc 11600 fprod2dlemstep 11632 ntrcls0 13716 |
Copyright terms: Public domain | W3C validator |