ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 Unicode version

Theorem ss0 3449
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0  |-  ( A 
C_  (/)  ->  A  =  (/) )

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3448 . 2  |-  ( A 
C_  (/)  <->  A  =  (/) )
21biimpi 119 1  |-  ( A 
C_  (/)  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3116   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  sseq0  3450  abf  3452  eq0rdv  3453  ssdisj  3465  0dif  3480  poirr2  4996  iotanul  5168  f00  5379  map0b  6653  phplem2  6819  php5dom  6829  sbthlem7  6928  fi0  6940  casefun  7050  caseinj  7054  djufun  7069  djuinj  7071  nnnninfeq  7092  exmidomni  7106  ixxdisj  9839  icodisj  9928  ioodisj  9929  uzdisj  10028  nn0disj  10073  fsum2dlemstep  11375  fprodssdc  11531  fprod2dlemstep  11563  ntrcls0  12781
  Copyright terms: Public domain W3C validator