![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss0 | Unicode version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
Ref | Expression |
---|---|
ss0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3322 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 118 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-dif 3001 df-in 3005 df-ss 3012 df-nul 3287 |
This theorem is referenced by: sseq0 3324 abf 3326 eq0rdv 3327 ssdisj 3339 0dif 3354 poirr2 4824 iotanul 4995 f00 5202 map0b 6444 phplem2 6569 php5dom 6579 sbthlem7 6672 casefun 6776 caseinj 6780 djufun 6784 djuinj 6786 exmidomni 6798 ixxdisj 9321 icodisj 9409 ioodisj 9410 uzdisj 9507 nn0disj 9549 fsum2dlemstep 10828 nninfalllemn 11898 |
Copyright terms: Public domain | W3C validator |