| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ss0 | Unicode version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| ss0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ss0b 3490 | 
. 2
 | |
| 2 | 1 | biimpi 120 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 | 
| This theorem is referenced by: sseq0 3492 abf 3494 eq0rdv 3495 ssdisj 3507 0dif 3522 poirr2 5062 iotanul 5234 f00 5449 map0b 6746 phplem2 6914 php5dom 6924 sbthlem7 7029 fi0 7041 casefun 7151 caseinj 7155 djufun 7170 djuinj 7172 nninfninc 7189 nnnninfeq 7194 exmidomni 7208 ixxdisj 9978 icodisj 10067 ioodisj 10068 uzdisj 10168 nn0disj 10213 fsum2dlemstep 11599 fprodssdc 11755 fprod2dlemstep 11787 ntrcls0 14367 | 
| Copyright terms: Public domain | W3C validator |