ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 Unicode version

Theorem ss0 3509
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0  |-  ( A 
C_  (/)  ->  A  =  (/) )

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3508 . 2  |-  ( A 
C_  (/)  <->  A  =  (/) )
21biimpi 120 1  |-  ( A 
C_  (/)  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3174   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469
This theorem is referenced by:  sseq0  3510  abf  3512  eq0rdv  3513  ssdisj  3525  0dif  3540  poirr2  5094  iotanul  5266  f00  5489  map0b  6797  phplem2  6975  php5dom  6985  sbthlem7  7091  fi0  7103  casefun  7213  caseinj  7217  djufun  7232  djuinj  7234  nninfninc  7251  nnnninfeq  7256  exmidomni  7270  ixxdisj  10060  icodisj  10149  ioodisj  10150  uzdisj  10250  nn0disj  10295  swrd0g  11151  fsum2dlemstep  11860  fprodssdc  12016  fprod2dlemstep  12048  ntrcls0  14718
  Copyright terms: Public domain W3C validator