ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0 Unicode version

Theorem ss0 3501
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0  |-  ( A 
C_  (/)  ->  A  =  (/) )

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3500 . 2  |-  ( A 
C_  (/)  <->  A  =  (/) )
21biimpi 120 1  |-  ( A 
C_  (/)  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by:  sseq0  3502  abf  3504  eq0rdv  3505  ssdisj  3517  0dif  3532  poirr2  5075  iotanul  5247  f00  5467  map0b  6774  phplem2  6950  php5dom  6960  sbthlem7  7065  fi0  7077  casefun  7187  caseinj  7191  djufun  7206  djuinj  7208  nninfninc  7225  nnnninfeq  7230  exmidomni  7244  ixxdisj  10025  icodisj  10114  ioodisj  10115  uzdisj  10215  nn0disj  10260  swrd0g  11113  fsum2dlemstep  11745  fprodssdc  11901  fprod2dlemstep  11933  ntrcls0  14603
  Copyright terms: Public domain W3C validator