| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss0 | Unicode version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.) |
| Ref | Expression |
|---|---|
| ss0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3500 |
. 2
| |
| 2 | 1 | biimpi 120 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 |
| This theorem is referenced by: sseq0 3502 abf 3504 eq0rdv 3505 ssdisj 3517 0dif 3532 poirr2 5075 iotanul 5247 f00 5467 map0b 6774 phplem2 6950 php5dom 6960 sbthlem7 7065 fi0 7077 casefun 7187 caseinj 7191 djufun 7206 djuinj 7208 nninfninc 7225 nnnninfeq 7230 exmidomni 7244 ixxdisj 10025 icodisj 10114 ioodisj 10115 uzdisj 10215 nn0disj 10260 swrd0g 11113 fsum2dlemstep 11745 fprodssdc 11901 fprod2dlemstep 11933 ntrcls0 14603 |
| Copyright terms: Public domain | W3C validator |