ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif0 Unicode version

Theorem dif0 3562
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
dif0  |-  ( A 
\  (/) )  =  A

Proof of Theorem dif0
StepHypRef Expression
1 difid 3560 . . 3  |-  ( A 
\  A )  =  (/)
21difeq2i 3319 . 2  |-  ( A 
\  ( A  \  A ) )  =  ( A  \  (/) )
3 difdif 3329 . 2  |-  ( A 
\  ( A  \  A ) )  =  A
42, 3eqtr3i 2252 1  |-  ( A 
\  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    \ cdif 3194   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  disjdif2  3570  exmid1stab  4292  2oconcl  6585  diffifi  7056  undifdc  7086  difinfinf  7268  ismkvnex  7322  m1bits  12471  0cld  14786
  Copyright terms: Public domain W3C validator