ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif0 Unicode version

Theorem dif0 3495
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
dif0  |-  ( A 
\  (/) )  =  A

Proof of Theorem dif0
StepHypRef Expression
1 difid 3493 . . 3  |-  ( A 
\  A )  =  (/)
21difeq2i 3252 . 2  |-  ( A 
\  ( A  \  A ) )  =  ( A  \  (/) )
3 difdif 3262 . 2  |-  ( A 
\  ( A  \  A ) )  =  A
42, 3eqtr3i 2200 1  |-  ( A 
\  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    \ cdif 3128   (/)c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425
This theorem is referenced by:  disjdif2  3503  exmid1stab  4210  2oconcl  6442  diffifi  6896  undifdc  6925  difinfinf  7102  ismkvnex  7155  0cld  13697
  Copyright terms: Public domain W3C validator