ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif0 Unicode version

Theorem dif0 3521
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
dif0  |-  ( A 
\  (/) )  =  A

Proof of Theorem dif0
StepHypRef Expression
1 difid 3519 . . 3  |-  ( A 
\  A )  =  (/)
21difeq2i 3278 . 2  |-  ( A 
\  ( A  \  A ) )  =  ( A  \  (/) )
3 difdif 3288 . 2  |-  ( A 
\  ( A  \  A ) )  =  A
42, 3eqtr3i 2219 1  |-  ( A 
\  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    \ cdif 3154   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  disjdif2  3529  exmid1stab  4241  2oconcl  6497  diffifi  6955  undifdc  6985  difinfinf  7167  ismkvnex  7221  0cld  14348
  Copyright terms: Public domain W3C validator