ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif0 Unicode version

Theorem dif0 3531
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
dif0  |-  ( A 
\  (/) )  =  A

Proof of Theorem dif0
StepHypRef Expression
1 difid 3529 . . 3  |-  ( A 
\  A )  =  (/)
21difeq2i 3288 . 2  |-  ( A 
\  ( A  \  A ) )  =  ( A  \  (/) )
3 difdif 3298 . 2  |-  ( A 
\  ( A  \  A ) )  =  A
42, 3eqtr3i 2228 1  |-  ( A 
\  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    \ cdif 3163   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by:  disjdif2  3539  exmid1stab  4252  2oconcl  6525  diffifi  6991  undifdc  7021  difinfinf  7203  ismkvnex  7257  m1bits  12271  0cld  14584
  Copyright terms: Public domain W3C validator