![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim12d | Unicode version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 10-May-1994.) |
Ref | Expression |
---|---|
orim12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
orim12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orim12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | orim12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | pm3.48 734 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 403 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: orim1d 736 orim2d 737 3orim123d 1256 19.33b2 1565 eqifdc 3425 preq12b 3614 prel12 3615 funun 5058 nnsucelsuc 6252 nnaord 6268 nnmord 6276 swoer 6320 fidceq 6585 fin0or 6602 enomnilem 6794 exmidomni 6798 fodjuomnilemres 6803 ltsopr 7155 cauappcvgprlemloc 7211 caucvgprlemloc 7234 caucvgprprlemloc 7262 mulextsr1lem 7325 reapcotr 8075 apcotr 8084 mulext1 8089 mulext 8091 peano2z 8786 zeo 8851 uzm1 9049 eluzdc 9097 fzospliti 9587 frec2uzltd 9810 absext 10496 qabsor 10508 maxleast 10646 dvdslelemd 11122 odd2np1lem 11150 odd2np1 11151 isprm6 11404 uzdcinzz 11698 bj-findis 11874 nninfomnilem 11910 |
Copyright terms: Public domain | W3C validator |