Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2eu2ex | GIF version |
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu2ex | ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2049 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑) | |
2 | euex 2049 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
3 | 2 | eximi 1593 | . 2 ⊢ (∃𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 ∃!weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |