ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu2ex GIF version

Theorem 2eu2ex 2147
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2087 . 2 (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑)
2 euex 2087 . . 3 (∃!𝑦𝜑 → ∃𝑦𝜑)
32eximi 1626 . 2 (∃𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
41, 3syl 14 1 (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1518  ∃!weu 2057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-eu 2060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator