ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu2ex GIF version

Theorem 2eu2ex 2103
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2044 . 2 (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑)
2 euex 2044 . . 3 (∃!𝑦𝜑 → ∃𝑦𝜑)
32eximi 1588 . 2 (∃𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
41, 3syl 14 1 (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1480  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator