| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2eu2ex | GIF version | ||
| Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| 2eu2ex | ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2085 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑) | |
| 2 | euex 2085 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
| 3 | 2 | eximi 1624 | . 2 ⊢ (∃𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
| 4 | 1, 3 | syl 14 | 1 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |