ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu2ex GIF version

Theorem 2eu2ex 2113
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2054 . 2 (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑)
2 euex 2054 . . 3 (∃!𝑦𝜑 → ∃𝑦𝜑)
32eximi 1598 . 2 (∃𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
41, 3syl 14 1 (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1490  ∃!weu 2024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-eu 2027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator