ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu2ex GIF version

Theorem 2eu2ex 2108
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2049 . 2 (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑)
2 euex 2049 . . 3 (∃!𝑦𝜑 → ∃𝑦𝜑)
32eximi 1593 . 2 (∃𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
41, 3syl 14 1 (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1485  ∃!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator