ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu2ex GIF version

Theorem 2eu2ex 2144
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2085 . 2 (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑)
2 euex 2085 . . 3 (∃!𝑦𝜑 → ∃𝑦𝜑)
32eximi 1624 . 2 (∃𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
41, 3syl 14 1 (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1516  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator