Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2eu2ex | GIF version |
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu2ex | ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2054 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑) | |
2 | euex 2054 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
3 | 2 | eximi 1598 | . 2 ⊢ (∃𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1490 ∃!weu 2024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-eu 2027 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |