ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euex Unicode version

Theorem euex 2049
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
euex  |-  ( E! x ph  ->  E. x ph )

Proof of Theorem euex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-17 1519 . . 3  |-  ( ph  ->  A. y ph )
21eu1 2044 . 2  |-  ( E! x ph  <->  E. x
( ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) ) )
3 exsimpl 1610 . 2  |-  ( E. x ( ph  /\  A. y ( [ y  /  x ] ph  ->  x  =  y ) )  ->  E. x ph )
42, 3sylbi 120 1  |-  ( E! x ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485   [wsb 1755   E!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022
This theorem is referenced by:  eu2  2063  eu3h  2064  eu5  2066  exmoeudc  2082  eupickbi  2101  2eu2ex  2108  euxfrdc  2916  repizf  4105  eusvnf  4438  eusvnfb  4439  tz6.12c  5526  ndmfvg  5527  nfvres  5529  0fv  5531  eusvobj2  5839  fnoprabg  5954  0g0  12630  txcn  13069
  Copyright terms: Public domain W3C validator