ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euex Unicode version

Theorem euex 2056
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
euex  |-  ( E! x ph  ->  E. x ph )

Proof of Theorem euex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-17 1526 . . 3  |-  ( ph  ->  A. y ph )
21eu1 2051 . 2  |-  ( E! x ph  <->  E. x
( ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) ) )
3 exsimpl 1617 . 2  |-  ( E. x ( ph  /\  A. y ( [ y  /  x ] ph  ->  x  =  y ) )  ->  E. x ph )
42, 3sylbi 121 1  |-  ( E! x ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1492   [wsb 1762   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029
This theorem is referenced by:  eu2  2070  eu3h  2071  eu5  2073  exmoeudc  2089  eupickbi  2108  2eu2ex  2115  euxfrdc  2923  repizf  4119  eusvnf  4453  eusvnfb  4454  tz6.12c  5545  ndmfvg  5546  nfvres  5548  0fv  5550  eusvobj2  5860  fnoprabg  5975  0g0  12794  txcn  13745
  Copyright terms: Public domain W3C validator