| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euex | Unicode version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 |
. . 3
| |
| 2 | 1 | eu1 2070 |
. 2
|
| 3 | exsimpl 1631 |
. 2
| |
| 4 | 2, 3 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 |
| This theorem is referenced by: eu2 2089 eu3h 2090 eu5 2092 exmoeudc 2108 eupickbi 2127 2eu2ex 2134 euxfrdc 2950 repizf 4150 eusvnf 4489 eusvnfb 4490 tz6.12c 5591 ndmfvg 5592 elfvm 5594 nfvres 5595 0fv 5597 eusvobj2 5911 fnoprabg 6027 0g0 13078 txcn 14595 |
| Copyright terms: Public domain | W3C validator |