| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euex | Unicode version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 |
. . 3
| |
| 2 | 1 | eu1 2080 |
. 2
|
| 3 | exsimpl 1641 |
. 2
| |
| 4 | 2, 3 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 |
| This theorem is referenced by: eu2 2100 eu3h 2101 eu5 2103 exmoeudc 2119 eupickbi 2138 2eu2ex 2145 euxfrdc 2966 repizf 4176 eusvnf 4518 eusvnfb 4519 tz6.12c 5629 ndmfvg 5630 elfvm 5632 nfvres 5633 0fv 5635 eusvobj2 5953 fnoprabg 6069 0g0 13323 txcn 14862 |
| Copyright terms: Public domain | W3C validator |