| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euex | Unicode version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. . 3
| |
| 2 | 1 | eu1 2079 |
. 2
|
| 3 | exsimpl 1640 |
. 2
| |
| 4 | 2, 3 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 |
| This theorem is referenced by: eu2 2098 eu3h 2099 eu5 2101 exmoeudc 2117 eupickbi 2136 2eu2ex 2143 euxfrdc 2959 repizf 4161 eusvnf 4501 eusvnfb 4502 tz6.12c 5608 ndmfvg 5609 elfvm 5611 nfvres 5612 0fv 5614 eusvobj2 5932 fnoprabg 6048 0g0 13241 txcn 14780 |
| Copyright terms: Public domain | W3C validator |