ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moswapdc Unicode version

Theorem 2moswapdc 2104
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.)
Assertion
Ref Expression
2moswapdc  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) ) )

Proof of Theorem 2moswapdc
StepHypRef Expression
1 nfe1 1484 . . . 4  |-  F/ y E. y ph
21moexexdc 2098 . . 3  |-  (DECID  E. x E. y ph  ->  (
( E* x E. y ph  /\  A. x E* y ph )  ->  E* y E. x ( E. y ph  /\  ph ) ) )
32expcomd 1429 . 2  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) ) )
4 19.8a 1578 . . . . . 6  |-  ( ph  ->  E. y ph )
54pm4.71ri 390 . . . . 5  |-  ( ph  <->  ( E. y ph  /\  ph ) )
65exbii 1593 . . . 4  |-  ( E. x ph  <->  E. x
( E. y ph  /\ 
ph ) )
76mobii 2051 . . 3  |-  ( E* y E. x ph  <->  E* y E. x ( E. y ph  /\  ph ) )
87imbi2i 225 . 2  |-  ( ( E* x E. y ph  ->  E* y E. x ph )  <->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) )
93, 8syl6ibr 161 1  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 824   A.wal 1341   E.wex 1480   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  2euswapdc  2105
  Copyright terms: Public domain W3C validator