ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moswapdc Unicode version

Theorem 2moswapdc 2109
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.)
Assertion
Ref Expression
2moswapdc  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) ) )

Proof of Theorem 2moswapdc
StepHypRef Expression
1 nfe1 1489 . . . 4  |-  F/ y E. y ph
21moexexdc 2103 . . 3  |-  (DECID  E. x E. y ph  ->  (
( E* x E. y ph  /\  A. x E* y ph )  ->  E* y E. x ( E. y ph  /\  ph ) ) )
32expcomd 1434 . 2  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) ) )
4 19.8a 1583 . . . . . 6  |-  ( ph  ->  E. y ph )
54pm4.71ri 390 . . . . 5  |-  ( ph  <->  ( E. y ph  /\  ph ) )
65exbii 1598 . . . 4  |-  ( E. x ph  <->  E. x
( E. y ph  /\ 
ph ) )
76mobii 2056 . . 3  |-  ( E* y E. x ph  <->  E* y E. x ( E. y ph  /\  ph ) )
87imbi2i 225 . 2  |-  ( ( E* x E. y ph  ->  E* y E. x ph )  <->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) )
93, 8syl6ibr 161 1  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829   A.wal 1346   E.wex 1485   E*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  2euswapdc  2110
  Copyright terms: Public domain W3C validator