ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moswapdc Unicode version

Theorem 2moswapdc 2168
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.)
Assertion
Ref Expression
2moswapdc  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) ) )

Proof of Theorem 2moswapdc
StepHypRef Expression
1 nfe1 1542 . . . 4  |-  F/ y E. y ph
21moexexdc 2162 . . 3  |-  (DECID  E. x E. y ph  ->  (
( E* x E. y ph  /\  A. x E* y ph )  ->  E* y E. x ( E. y ph  /\  ph ) ) )
32expcomd 1484 . 2  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) ) )
4 19.8a 1636 . . . . . 6  |-  ( ph  ->  E. y ph )
54pm4.71ri 392 . . . . 5  |-  ( ph  <->  ( E. y ph  /\  ph ) )
65exbii 1651 . . . 4  |-  ( E. x ph  <->  E. x
( E. y ph  /\ 
ph ) )
76mobii 2114 . . 3  |-  ( E* y E. x ph  <->  E* y E. x ( E. y ph  /\  ph ) )
87imbi2i 226 . 2  |-  ( ( E* x E. y ph  ->  E* y E. x ph )  <->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) )
93, 8imbitrrdi 162 1  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839   A.wal 1393   E.wex 1538   E*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  2euswapdc  2169
  Copyright terms: Public domain W3C validator