Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2sb6 | Unicode version |
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2sb6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1866 | . 2 | |
2 | 19.21v 1853 | . . . 4 | |
3 | impexp 261 | . . . . 5 | |
4 | 3 | albii 1450 | . . . 4 |
5 | sb6 1866 | . . . . 5 | |
6 | 5 | imbi2i 225 | . . . 4 |
7 | 2, 4, 6 | 3bitr4ri 212 | . . 3 |
8 | 7 | albii 1450 | . 2 |
9 | 1, 8 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-sb 1743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |