![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2sb6 | GIF version |
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2sb6 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1886 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑)) | |
2 | 19.21v 1873 | . . . 4 ⊢ (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) | |
3 | impexp 263 | . . . . 5 ⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | |
4 | 3 | albii 1470 | . . . 4 ⊢ (∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) |
5 | sb6 1886 | . . . . 5 ⊢ ([𝑤 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑤 → 𝜑)) | |
6 | 5 | imbi2i 226 | . . . 4 ⊢ ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) |
7 | 2, 4, 6 | 3bitr4ri 213 | . . 3 ⊢ ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
8 | 7 | albii 1470 | . 2 ⊢ (∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
9 | 1, 8 | bitri 184 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |