ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sb6 GIF version

Theorem 2sb6 2000
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2sb6 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 2sb6
StepHypRef Expression
1 sb6 1898 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑))
2 19.21v 1884 . . . 4 (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)))
3 impexp 263 . . . . 5 (((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)))
43albii 1481 . . . 4 (∀𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)))
5 sb6 1898 . . . . 5 ([𝑤 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑤𝜑))
65imbi2i 226 . . . 4 ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)))
72, 4, 63bitr4ri 213 . . 3 ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
87albii 1481 . 2 (∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
91, 8bitri 184 1 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-sb 1774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator