ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant2l Unicode version

Theorem 3adant2l 1256
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant2l  |-  ( (
ph  /\  ( ta  /\ 
ps )  /\  ch )  ->  th )

Proof of Theorem 3adant2l
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213com12 1231 . . 3  |-  ( ( ps  /\  ph  /\  ch )  ->  th )
323adant1l 1254 . 2  |-  ( ( ( ta  /\  ps )  /\  ph  /\  ch )  ->  th )
433com12 1231 1  |-  ( (
ph  /\  ( ta  /\ 
ps )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  sbthlemi4  7127  addassnqg  7569  mulassnqg  7571  prmuloc  7753  ltpopr  7782  addasssrg  7943  axaddass  8059
  Copyright terms: Public domain W3C validator