Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3adant2l | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 |
Ref | Expression |
---|---|
3adant2l |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 | |
2 | 1 | 3com12 1197 | . . 3 |
3 | 2 | 3adant1l 1220 | . 2 |
4 | 3 | 3com12 1197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: sbthlemi4 6925 addassnqg 7323 mulassnqg 7325 prmuloc 7507 ltpopr 7536 addasssrg 7697 axaddass 7813 |
Copyright terms: Public domain | W3C validator |