| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3expb 1206 |
. . 3
|
| 3 | 2 | adantlr 477 |
. 2
|
| 4 | 3 | 3impb 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2r 1235 3adant3r 1237 tfr1onlembacc 6427 tfr1onlembfn 6429 tfr1onlemaccex 6433 tfr1onlemres 6434 tfrcllembfn 6442 tfrcllemaccex 6446 tfrcllemres 6447 tfrcldm 6448 tfrcl 6449 mulassnqg 7496 prarloc 7615 prmuloc 7678 addasssrg 7868 axaddass 7984 ghmgrp 13425 |
| Copyright terms: Public domain | W3C validator |