| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3expb 1207 |
. . 3
|
| 3 | 2 | adantlr 477 |
. 2
|
| 4 | 3 | 3impb 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant2r 1236 3adant3r 1238 tfr1onlembacc 6428 tfr1onlembfn 6430 tfr1onlemaccex 6434 tfr1onlemres 6435 tfrcllembfn 6443 tfrcllemaccex 6447 tfrcllemres 6448 tfrcldm 6449 tfrcl 6450 mulassnqg 7497 prarloc 7616 prmuloc 7679 addasssrg 7869 axaddass 7985 ghmgrp 13454 |
| Copyright terms: Public domain | W3C validator |