| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3expb 1206 |
. . 3
|
| 3 | 2 | adantlr 477 |
. 2
|
| 4 | 3 | 3impb 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant2r 1235 3adant3r 1237 tfr1onlembacc 6409 tfr1onlembfn 6411 tfr1onlemaccex 6415 tfr1onlemres 6416 tfrcllembfn 6424 tfrcllemaccex 6428 tfrcllemres 6429 tfrcldm 6430 tfrcl 6431 mulassnqg 7468 prarloc 7587 prmuloc 7650 addasssrg 7840 axaddass 7956 ghmgrp 13324 |
| Copyright terms: Public domain | W3C validator |