ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r Unicode version

Theorem 3adant1r 1231
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant1r  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1204 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ( ps  /\  ch ) )  ->  th )
433impb 1199 1  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  3adant2r  1233  3adant3r  1235  tfr1onlembacc  6342  tfr1onlembfn  6344  tfr1onlemaccex  6348  tfr1onlemres  6349  tfrcllembfn  6357  tfrcllemaccex  6361  tfrcllemres  6362  tfrcldm  6363  tfrcl  6364  mulassnqg  7382  prarloc  7501  prmuloc  7564  addasssrg  7754  axaddass  7870  ghmgrp  12936
  Copyright terms: Public domain W3C validator