ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r Unicode version

Theorem 3adant1r 1233
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant1r  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1206 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ( ps  /\  ch ) )  ->  th )
433impb 1201 1  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3adant2r  1235  3adant3r  1237  tfr1onlembacc  6395  tfr1onlembfn  6397  tfr1onlemaccex  6401  tfr1onlemres  6402  tfrcllembfn  6410  tfrcllemaccex  6414  tfrcllemres  6415  tfrcldm  6416  tfrcl  6417  mulassnqg  7444  prarloc  7563  prmuloc  7626  addasssrg  7816  axaddass  7932  ghmgrp  13188
  Copyright terms: Public domain W3C validator