ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r Unicode version

Theorem 3adant1r 1233
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant1r  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1206 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ( ps  /\  ch ) )  ->  th )
433impb 1201 1  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3adant2r  1235  3adant3r  1237  tfr1onlembacc  6409  tfr1onlembfn  6411  tfr1onlemaccex  6415  tfr1onlemres  6416  tfrcllembfn  6424  tfrcllemaccex  6428  tfrcllemres  6429  tfrcldm  6430  tfrcl  6431  mulassnqg  7468  prarloc  7587  prmuloc  7650  addasssrg  7840  axaddass  7956  ghmgrp  13324
  Copyright terms: Public domain W3C validator