ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r Unicode version

Theorem 3adant1r 1255
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant1r  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1228 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ( ps  /\  ch ) )  ->  th )
433impb 1223 1  |-  ( ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3adant2r  1257  3adant3r  1259  tfr1onlembacc  6488  tfr1onlembfn  6490  tfr1onlemaccex  6494  tfr1onlemres  6495  tfrcllembfn  6503  tfrcllemaccex  6507  tfrcllemres  6508  tfrcldm  6509  tfrcl  6510  mulassnqg  7571  prarloc  7690  prmuloc  7753  addasssrg  7943  axaddass  8059  ghmgrp  13655
  Copyright terms: Public domain W3C validator