| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3expb 1228 |
. . 3
|
| 3 | 2 | adantlr 477 |
. 2
|
| 4 | 3 | 3impb 1223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant2r 1257 3adant3r 1259 tfr1onlembacc 6488 tfr1onlembfn 6490 tfr1onlemaccex 6494 tfr1onlemres 6495 tfrcllembfn 6503 tfrcllemaccex 6507 tfrcllemres 6508 tfrcldm 6509 tfrcl 6510 mulassnqg 7571 prarloc 7690 prmuloc 7753 addasssrg 7943 axaddass 8059 ghmgrp 13655 |
| Copyright terms: Public domain | W3C validator |