| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant1r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3expb 1207 |
. . 3
|
| 3 | 2 | adantlr 477 |
. 2
|
| 4 | 3 | 3impb 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant2r 1236 3adant3r 1238 tfr1onlembacc 6451 tfr1onlembfn 6453 tfr1onlemaccex 6457 tfr1onlemres 6458 tfrcllembfn 6466 tfrcllemaccex 6470 tfrcllemres 6471 tfrcldm 6472 tfrcl 6473 mulassnqg 7532 prarloc 7651 prmuloc 7714 addasssrg 7904 axaddass 8020 ghmgrp 13569 |
| Copyright terms: Public domain | W3C validator |