ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc Unicode version

Theorem prmuloc 7540
Description: Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
prmuloc  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  E. d  e.  Q.  E. u  e. 
Q.  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A )  <Q 
( d  .Q  B
) ) )
Distinct variable groups:    A, d, u    B, d, u    L, d, u    U, d, u

Proof of Theorem prmuloc
Dummy variables  p  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7383 . . 3  |-  ( A 
<Q  B  ->  E. x  e.  Q.  ( A  +Q  x )  =  B )
21adantl 277 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  E. x  e.  Q.  ( A  +Q  x )  =  B )
3 prml 7451 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  E. r  e.  Q.  r  e.  L )
43ad2antrr 488 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  ->  E. r  e.  Q.  r  e.  L
)
5 simprl 529 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  -> 
r  e.  Q. )
6 simplrl 535 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  x  e.  Q. )
7 mulclnq 7350 . . . . . 6  |-  ( ( r  e.  Q.  /\  x  e.  Q. )  ->  ( r  .Q  x
)  e.  Q. )
85, 6, 7syl2anc 411 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  -> 
( r  .Q  x
)  e.  Q. )
9 ltrelnq 7339 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
109brel 4672 . . . . . . 7  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
1110simprd 114 . . . . . 6  |-  ( A 
<Q  B  ->  B  e. 
Q. )
1211ad3antlr 493 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  B  e.  Q. )
13 appdiv0nq 7538 . . . . 5  |-  ( ( ( r  .Q  x
)  e.  Q.  /\  B  e.  Q. )  ->  E. p  e.  Q.  ( p  .Q  B
)  <Q  ( r  .Q  x ) )
148, 12, 13syl2anc 411 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  E. p  e.  Q.  ( p  .Q  B
)  <Q  ( r  .Q  x ) )
15 prarloc 7477 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  p  e.  Q. )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
1615adantlr 477 . . . . . . . . 9  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  p  e.  Q. )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
1716adantlr 477 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  p  e. 
Q. )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
1817ad2ant2r 509 . . . . . . 7  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
19 r2ex 2495 . . . . . . 7  |-  ( E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p
)  <->  E. d E. u
( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )
2018, 19sylib 122 . . . . . 6  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d E. u ( ( d  e.  L  /\  u  e.  U
)  /\  u  <Q  ( d  +Q  p ) ) )
21 elprnql 7455 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  d  e.  L )  ->  d  e.  Q. )
2221adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  d  e.  L )  ->  d  e.  Q. )
2322adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  d  e.  L )  ->  d  e.  Q. )
2423adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  d  e.  L )  ->  d  e.  Q. )
2524ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( d  e.  L  /\  u  e.  U
) )  ->  d  e.  Q. )
2625adantrr 479 . . . . . . . . 9  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
d  e.  Q. )
27 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  <. L ,  U >.  e. 
P. )
2827ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  <. L ,  U >.  e. 
P. )
29 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( d  e.  L  /\  u  e.  U
) )
3029simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  u  e.  U )
31 elprnqu 7456 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  u  e.  U )  ->  u  e.  Q. )
3228, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  u  e.  Q. )
33 prltlu 7461 . . . . . . . . . . . . . . . . 17  |-  ( (
<. L ,  U >.  e. 
P.  /\  r  e.  L  /\  u  e.  U
)  ->  r  <Q  u )
34333adant1r 1231 . . . . . . . . . . . . . . . 16  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  e.  L  /\  u  e.  U )  ->  r  <Q  u )
35343adant2l 1232 . . . . . . . . . . . . . . 15  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
r  e.  Q.  /\  r  e.  L )  /\  u  e.  U
)  ->  r  <Q  u )
36353adant3l 1234 . . . . . . . . . . . . . 14  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
r  e.  Q.  /\  r  e.  L )  /\  ( d  e.  L  /\  u  e.  U
) )  ->  r  <Q  u )
37363adant1r 1231 . . . . . . . . . . . . 13  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L )  /\  (
d  e.  L  /\  u  e.  U )
)  ->  r  <Q  u )
38373expa 1203 . . . . . . . . . . . 12  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( d  e.  L  /\  u  e.  U ) )  -> 
r  <Q  u )
3938ad2ant2r 509 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
r  <Q  u )
40 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  u  <Q  ( d  +Q  p ) )
41 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  -> 
( A  +Q  x
)  =  B )
4241ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( A  +Q  x
)  =  B )
43 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( p  .Q  B
)  <Q  ( r  .Q  x ) )
4410simpld 112 . . . . . . . . . . . . 13  |-  ( A 
<Q  B  ->  A  e. 
Q. )
4544ad3antlr 493 . . . . . . . . . . . 12  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  A  e.  Q. )
4645ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  A  e.  Q. )
4712ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  B  e.  Q. )
48 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  p  e.  Q. )
496ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  x  e.  Q. )
5039, 40, 42, 43, 46, 47, 26, 48, 49prmuloclemcalc 7539 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( u  .Q  A
)  <Q  ( d  .Q  B ) )
51 df-3an 980 . . . . . . . . . 10  |-  ( ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) )  <->  ( (
d  e.  L  /\  u  e.  U )  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
5229, 50, 51sylanbrc 417 . . . . . . . . 9  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
5326, 32, 52jca31 309 . . . . . . . 8  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) )
5453ex 115 . . . . . . 7  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  -> 
( ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) )  ->  (
( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) ) )
55542eximdv 1880 . . . . . 6  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  -> 
( E. d E. u ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) ) )
5620, 55mpd 13 . . . . 5  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) )
57 r2ex 2495 . . . . 5  |-  ( E. d  e.  Q.  E. u  e.  Q.  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) )  <->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) )
5856, 57sylibr 134 . . . 4  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
5914, 58rexlimddv 2597 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
604, 59rexlimddv 2597 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  ->  E. d  e.  Q.  E. u  e. 
Q.  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A )  <Q 
( d  .Q  B
) ) )
612, 60rexlimddv 2597 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  E. d  e.  Q.  E. u  e. 
Q.  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A )  <Q 
( d  .Q  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353   E.wex 1490    e. wcel 2146   E.wrex 2454   <.cop 3592   class class class wbr 3998  (class class class)co 5865   Q.cnq 7254    +Q cplq 7256    .Q cmq 7257    <Q cltq 7259   P.cnp 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440
This theorem is referenced by:  prmuloc2  7541  mullocpr  7545
  Copyright terms: Public domain W3C validator