ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc Unicode version

Theorem prmuloc 7188
Description: Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
prmuloc  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  E. d  e.  Q.  E. u  e. 
Q.  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A )  <Q 
( d  .Q  B
) ) )
Distinct variable groups:    A, d, u    B, d, u    L, d, u    U, d, u

Proof of Theorem prmuloc
Dummy variables  p  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7031 . . 3  |-  ( A 
<Q  B  ->  E. x  e.  Q.  ( A  +Q  x )  =  B )
21adantl 272 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  E. x  e.  Q.  ( A  +Q  x )  =  B )
3 prml 7099 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  E. r  e.  Q.  r  e.  L )
43ad2antrr 473 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  ->  E. r  e.  Q.  r  e.  L
)
5 simprl 499 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  -> 
r  e.  Q. )
6 simplrl 503 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  x  e.  Q. )
7 mulclnq 6998 . . . . . 6  |-  ( ( r  e.  Q.  /\  x  e.  Q. )  ->  ( r  .Q  x
)  e.  Q. )
85, 6, 7syl2anc 404 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  -> 
( r  .Q  x
)  e.  Q. )
9 ltrelnq 6987 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
109brel 4505 . . . . . . 7  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
1110simprd 113 . . . . . 6  |-  ( A 
<Q  B  ->  B  e. 
Q. )
1211ad3antlr 478 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  B  e.  Q. )
13 appdiv0nq 7186 . . . . 5  |-  ( ( ( r  .Q  x
)  e.  Q.  /\  B  e.  Q. )  ->  E. p  e.  Q.  ( p  .Q  B
)  <Q  ( r  .Q  x ) )
148, 12, 13syl2anc 404 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  E. p  e.  Q.  ( p  .Q  B
)  <Q  ( r  .Q  x ) )
15 prarloc 7125 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  p  e.  Q. )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
1615adantlr 462 . . . . . . . . 9  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  p  e.  Q. )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
1716adantlr 462 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  p  e. 
Q. )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
1817ad2ant2r 494 . . . . . . 7  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p ) )
19 r2ex 2399 . . . . . . 7  |-  ( E. d  e.  L  E. u  e.  U  u  <Q  ( d  +Q  p
)  <->  E. d E. u
( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )
2018, 19sylib 121 . . . . . 6  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d E. u ( ( d  e.  L  /\  u  e.  U
)  /\  u  <Q  ( d  +Q  p ) ) )
21 elprnql 7103 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  d  e.  L )  ->  d  e.  Q. )
2221adantlr 462 . . . . . . . . . . . . 13  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  d  e.  L )  ->  d  e.  Q. )
2322adantlr 462 . . . . . . . . . . . 12  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  d  e.  L )  ->  d  e.  Q. )
2423adantlr 462 . . . . . . . . . . 11  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  d  e.  L )  ->  d  e.  Q. )
2524ad2ant2r 494 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( d  e.  L  /\  u  e.  U
) )  ->  d  e.  Q. )
2625adantrr 464 . . . . . . . . 9  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
d  e.  Q. )
27 simplll 501 . . . . . . . . . . 11  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  <. L ,  U >.  e. 
P. )
2827ad2antrr 473 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  <. L ,  U >.  e. 
P. )
29 simprl 499 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( d  e.  L  /\  u  e.  U
) )
3029simprd 113 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  u  e.  U )
31 elprnqu 7104 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  u  e.  U )  ->  u  e.  Q. )
3228, 30, 31syl2anc 404 . . . . . . . . 9  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  u  e.  Q. )
33 prltlu 7109 . . . . . . . . . . . . . . . . 17  |-  ( (
<. L ,  U >.  e. 
P.  /\  r  e.  L  /\  u  e.  U
)  ->  r  <Q  u )
34333adant1r 1168 . . . . . . . . . . . . . . . 16  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  e.  L  /\  u  e.  U )  ->  r  <Q  u )
35343adant2l 1169 . . . . . . . . . . . . . . 15  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
r  e.  Q.  /\  r  e.  L )  /\  u  e.  U
)  ->  r  <Q  u )
36353adant3l 1171 . . . . . . . . . . . . . 14  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
r  e.  Q.  /\  r  e.  L )  /\  ( d  e.  L  /\  u  e.  U
) )  ->  r  <Q  u )
37363adant1r 1168 . . . . . . . . . . . . 13  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L )  /\  (
d  e.  L  /\  u  e.  U )
)  ->  r  <Q  u )
38373expa 1144 . . . . . . . . . . . 12  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( d  e.  L  /\  u  e.  U ) )  -> 
r  <Q  u )
3938ad2ant2r 494 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
r  <Q  u )
40 simprr 500 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  u  <Q  ( d  +Q  p ) )
41 simplrr 504 . . . . . . . . . . . 12  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  -> 
( A  +Q  x
)  =  B )
4241ad2antrr 473 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( A  +Q  x
)  =  B )
43 simplrr 504 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( p  .Q  B
)  <Q  ( r  .Q  x ) )
4410simpld 111 . . . . . . . . . . . . 13  |-  ( A 
<Q  B  ->  A  e. 
Q. )
4544ad3antlr 478 . . . . . . . . . . . 12  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  A  e.  Q. )
4645ad2antrr 473 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  A  e.  Q. )
4712ad2antrr 473 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  B  e.  Q. )
48 simplrl 503 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  p  e.  Q. )
496ad2antrr 473 . . . . . . . . . . 11  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  ->  x  e.  Q. )
5039, 40, 42, 43, 46, 47, 26, 48, 49prmuloclemcalc 7187 . . . . . . . . . 10  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( u  .Q  A
)  <Q  ( d  .Q  B ) )
51 df-3an 927 . . . . . . . . . 10  |-  ( ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) )  <->  ( (
d  e.  L  /\  u  e.  U )  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
5229, 50, 51sylanbrc 409 . . . . . . . . 9  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
5326, 32, 52jca31 303 . . . . . . . 8  |-  ( ( ( ( ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  /\  ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) ) )  -> 
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) )
5453ex 114 . . . . . . 7  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  -> 
( ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) )  ->  (
( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) ) )
55542eximdv 1811 . . . . . 6  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  -> 
( E. d E. u ( ( d  e.  L  /\  u  e.  U )  /\  u  <Q  ( d  +Q  p
) )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) ) )
5620, 55mpd 13 . . . . 5  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) )
57 r2ex 2399 . . . . 5  |-  ( E. d  e.  Q.  E. u  e.  Q.  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) )  <->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) ) )
5856, 57sylibr 133 . . . 4  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x )  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  /\  ( p  e.  Q.  /\  (
p  .Q  B ) 
<Q  ( r  .Q  x
) ) )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
5914, 58rexlimddv 2496 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  ( x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  /\  ( r  e.  Q.  /\  r  e.  L ) )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  L  /\  u  e.  U  /\  ( u  .Q  A
)  <Q  ( d  .Q  B ) ) )
604, 59rexlimddv 2496 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  (
x  e.  Q.  /\  ( A  +Q  x
)  =  B ) )  ->  E. d  e.  Q.  E. u  e. 
Q.  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A )  <Q 
( d  .Q  B
) ) )
612, 60rexlimddv 2496 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  E. d  e.  Q.  E. u  e. 
Q.  ( d  e.  L  /\  u  e.  U  /\  ( u  .Q  A )  <Q 
( d  .Q  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 925    = wceq 1290   E.wex 1427    e. wcel 1439   E.wrex 2361   <.cop 3455   class class class wbr 3853  (class class class)co 5668   Q.cnq 6902    +Q cplq 6904    .Q cmq 6905    <Q cltq 6907   P.cnp 6913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-eprel 4127  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-irdg 6151  df-1o 6197  df-2o 6198  df-oadd 6201  df-omul 6202  df-er 6308  df-ec 6310  df-qs 6314  df-ni 6926  df-pli 6927  df-mi 6928  df-lti 6929  df-plpq 6966  df-mpq 6967  df-enq 6969  df-nqqs 6970  df-plqqs 6971  df-mqqs 6972  df-1nqqs 6973  df-rq 6974  df-ltnqqs 6975  df-enq0 7046  df-nq0 7047  df-0nq0 7048  df-plq0 7049  df-mq0 7050  df-inp 7088
This theorem is referenced by:  prmuloc2  7189  mullocpr  7193
  Copyright terms: Public domain W3C validator