| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltpopr | Unicode version | ||
| Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7744. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltpopr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7623 |
. . . . . . . 8
| |
| 2 | prdisj 7640 |
. . . . . . . 8
| |
| 3 | 1, 2 | sylan 283 |
. . . . . . 7
|
| 4 | ancom 266 |
. . . . . . 7
| |
| 5 | 3, 4 | sylnib 678 |
. . . . . 6
|
| 6 | 5 | nrexdv 2601 |
. . . . 5
|
| 7 | ltdfpr 7654 |
. . . . . 6
| |
| 8 | 7 | anidms 397 |
. . . . 5
|
| 9 | 6, 8 | mtbird 675 |
. . . 4
|
| 10 | 9 | adantl 277 |
. . 3
|
| 11 | ltdfpr 7654 |
. . . . . . . . . . 11
| |
| 12 | 11 | 3adant3 1020 |
. . . . . . . . . 10
|
| 13 | ltdfpr 7654 |
. . . . . . . . . . 11
| |
| 14 | 13 | 3adant1 1018 |
. . . . . . . . . 10
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . . . . 9
|
| 16 | reeanv 2678 |
. . . . . . . . 9
| |
| 17 | 15, 16 | bitr4di 198 |
. . . . . . . 8
|
| 18 | 17 | biimpa 296 |
. . . . . . 7
|
| 19 | simprll 537 |
. . . . . . . . . . 11
| |
| 20 | prop 7623 |
. . . . . . . . . . . . . . . . . 18
| |
| 21 | prltlu 7635 |
. . . . . . . . . . . . . . . . . 18
| |
| 22 | 20, 21 | syl3an1 1283 |
. . . . . . . . . . . . . . . . 17
|
| 23 | 22 | 3adant3r 1238 |
. . . . . . . . . . . . . . . 16
|
| 24 | 23 | 3adant2l 1235 |
. . . . . . . . . . . . . . 15
|
| 25 | 24 | 3expb 1207 |
. . . . . . . . . . . . . 14
|
| 26 | 25 | 3ad2antl2 1163 |
. . . . . . . . . . . . 13
|
| 27 | 26 | adantlr 477 |
. . . . . . . . . . . 12
|
| 28 | prop 7623 |
. . . . . . . . . . . . . . . . 17
| |
| 29 | prcdnql 7632 |
. . . . . . . . . . . . . . . . 17
| |
| 30 | 28, 29 | sylan 283 |
. . . . . . . . . . . . . . . 16
|
| 31 | 30 | adantrl 478 |
. . . . . . . . . . . . . . 15
|
| 32 | 31 | adantrl 478 |
. . . . . . . . . . . . . 14
|
| 33 | 32 | 3ad2antl3 1164 |
. . . . . . . . . . . . 13
|
| 34 | 33 | adantlr 477 |
. . . . . . . . . . . 12
|
| 35 | 27, 34 | mpd 13 |
. . . . . . . . . . 11
|
| 36 | 19, 35 | jca 306 |
. . . . . . . . . 10
|
| 37 | 36 | ex 115 |
. . . . . . . . 9
|
| 38 | 37 | rexlimdvw 2629 |
. . . . . . . 8
|
| 39 | 38 | reximdv 2609 |
. . . . . . 7
|
| 40 | 18, 39 | mpd 13 |
. . . . . 6
|
| 41 | ltdfpr 7654 |
. . . . . . . . 9
| |
| 42 | 41 | 3adant2 1019 |
. . . . . . . 8
|
| 43 | 42 | biimprd 158 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | 40, 44 | mpd 13 |
. . . . 5
|
| 46 | 45 | ex 115 |
. . . 4
|
| 47 | 46 | adantl 277 |
. . 3
|
| 48 | 10, 47 | ispod 4369 |
. 2
|
| 49 | 48 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-mi 7454 df-lti 7455 df-enq 7495 df-nqqs 7496 df-ltnqqs 7501 df-inp 7614 df-iltp 7618 |
| This theorem is referenced by: ltsopr 7744 |
| Copyright terms: Public domain | W3C validator |