ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpopr Unicode version

Theorem ltpopr 7782
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7783. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltpopr  |-  <P  Po  P.

Proof of Theorem ltpopr
Dummy variables  r  q  s  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7662 . . . . . . . 8  |-  ( s  e.  P.  ->  <. ( 1st `  s ) ,  ( 2nd `  s
) >.  e.  P. )
2 prdisj 7679 . . . . . . . 8  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
31, 2sylan 283 . . . . . . 7  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
4 ancom 266 . . . . . . 7  |-  ( ( q  e.  ( 1st `  s )  /\  q  e.  ( 2nd `  s
) )  <->  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
53, 4sylnib 680 . . . . . 6  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
65nrexdv 2623 . . . . 5  |-  ( s  e.  P.  ->  -.  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) )
7 ltdfpr 7693 . . . . . 6  |-  ( ( s  e.  P.  /\  s  e.  P. )  ->  ( s  <P  s  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) ) )
87anidms 397 . . . . 5  |-  ( s  e.  P.  ->  (
s  <P  s  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) ) )
96, 8mtbird 677 . . . 4  |-  ( s  e.  P.  ->  -.  s  <P  s )
109adantl 277 . . 3  |-  ( ( T.  /\  s  e. 
P. )  ->  -.  s  <P  s )
11 ltdfpr 7693 . . . . . . . . . . 11  |-  ( ( s  e.  P.  /\  t  e.  P. )  ->  ( s  <P  t  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) ) ) )
12113adant3 1041 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  t  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) ) ) )
13 ltdfpr 7693 . . . . . . . . . . 11  |-  ( ( t  e.  P.  /\  u  e.  P. )  ->  ( t  <P  u  <->  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
14133adant1 1039 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
t  <P  u  <->  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
1512, 14anbi12d 473 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <-> 
( E. q  e. 
Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
16 reeanv 2701 . . . . . . . . 9  |-  ( E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  <->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) )  /\  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
1715, 16bitr4di 198 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <->  E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
1817biimpa 296 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  E. r  e. 
Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
19 simprll 537 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 2nd `  s ) )
20 prop 7662 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
21 prltlu 7674 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
2220, 21syl3an1 1304 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
23223adant3r 1259 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) )  -> 
q  <Q  r )
24233adant2l 1256 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  P.  /\  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  q  <Q  r )
25243expb 1228 . . . . . . . . . . . . . 14  |-  ( ( t  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
26253ad2antl2 1184 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
2726adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
28 prop 7662 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  P.  ->  <. ( 1st `  u ) ,  ( 2nd `  u
) >.  e.  P. )
29 prcdnql 7671 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  u
) ,  ( 2nd `  u ) >.  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3028, 29sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3130adantrl 478 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  P.  /\  ( r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  <Q  r  ->  q  e.  ( 1st `  u
) ) )
3231adantrl 478 . . . . . . . . . . . . . 14  |-  ( ( u  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
33323ad2antl3 1185 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3433adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3527, 34mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 1st `  u ) )
3619, 35jca 306 . . . . . . . . . 10  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) ) )
3736ex 115 . . . . . . . . 9  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3837rexlimdvw 2652 . . . . . . . 8  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3938reximdv 2631 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  E. r  e.  Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4018, 39mpd 13 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) )
41 ltdfpr 7693 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  u  e.  P. )  ->  ( s  <P  u  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
42413adant2 1040 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  u  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4342biimprd 158 . . . . . . 7  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  ( E. q  e.  Q.  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) )  ->  s  <P  u ) )
4443adantr 276 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) )  ->  s  <P  u ) )
4540, 44mpd 13 . . . . 5  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  s  <P  u )
4645ex 115 . . . 4  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  ->  s  <P  u
) )
4746adantl 277 . . 3  |-  ( ( T.  /\  ( s  e.  P.  /\  t  e.  P.  /\  u  e. 
P. ) )  -> 
( ( s  <P 
t  /\  t  <P  u )  ->  s  <P  u ) )
4810, 47ispod 4395 . 2  |-  ( T. 
->  <P  Po  P. )
4948mptru 1404 1  |-  <P  Po  P.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   T. wtru 1396    e. wcel 2200   E.wrex 2509   <.cop 3669   class class class wbr 4083    Po wpo 4385   ` cfv 5318   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    <Q cltq 7472   P.cnp 7478    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-mi 7493  df-lti 7494  df-enq 7534  df-nqqs 7535  df-ltnqqs 7540  df-inp 7653  df-iltp 7657
This theorem is referenced by:  ltsopr  7783
  Copyright terms: Public domain W3C validator