Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltpopr | Unicode version |
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7499. (Contributed by Jim Kingdon, 15-Dec-2019.) |
Ref | Expression |
---|---|
ltpopr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prop 7378 | . . . . . . . 8 | |
2 | prdisj 7395 | . . . . . . . 8 | |
3 | 1, 2 | sylan 281 | . . . . . . 7 |
4 | ancom 264 | . . . . . . 7 | |
5 | 3, 4 | sylnib 666 | . . . . . 6 |
6 | 5 | nrexdv 2550 | . . . . 5 |
7 | ltdfpr 7409 | . . . . . 6 | |
8 | 7 | anidms 395 | . . . . 5 |
9 | 6, 8 | mtbird 663 | . . . 4 |
10 | 9 | adantl 275 | . . 3 |
11 | ltdfpr 7409 | . . . . . . . . . . 11 | |
12 | 11 | 3adant3 1002 | . . . . . . . . . 10 |
13 | ltdfpr 7409 | . . . . . . . . . . 11 | |
14 | 13 | 3adant1 1000 | . . . . . . . . . 10 |
15 | 12, 14 | anbi12d 465 | . . . . . . . . 9 |
16 | reeanv 2626 | . . . . . . . . 9 | |
17 | 15, 16 | bitr4di 197 | . . . . . . . 8 |
18 | 17 | biimpa 294 | . . . . . . 7 |
19 | simprll 527 | . . . . . . . . . . 11 | |
20 | prop 7378 | . . . . . . . . . . . . . . . . . 18 | |
21 | prltlu 7390 | . . . . . . . . . . . . . . . . . 18 | |
22 | 20, 21 | syl3an1 1253 | . . . . . . . . . . . . . . . . 17 |
23 | 22 | 3adant3r 1217 | . . . . . . . . . . . . . . . 16 |
24 | 23 | 3adant2l 1214 | . . . . . . . . . . . . . . 15 |
25 | 24 | 3expb 1186 | . . . . . . . . . . . . . 14 |
26 | 25 | 3ad2antl2 1145 | . . . . . . . . . . . . 13 |
27 | 26 | adantlr 469 | . . . . . . . . . . . 12 |
28 | prop 7378 | . . . . . . . . . . . . . . . . 17 | |
29 | prcdnql 7387 | . . . . . . . . . . . . . . . . 17 | |
30 | 28, 29 | sylan 281 | . . . . . . . . . . . . . . . 16 |
31 | 30 | adantrl 470 | . . . . . . . . . . . . . . 15 |
32 | 31 | adantrl 470 | . . . . . . . . . . . . . 14 |
33 | 32 | 3ad2antl3 1146 | . . . . . . . . . . . . 13 |
34 | 33 | adantlr 469 | . . . . . . . . . . . 12 |
35 | 27, 34 | mpd 13 | . . . . . . . . . . 11 |
36 | 19, 35 | jca 304 | . . . . . . . . . 10 |
37 | 36 | ex 114 | . . . . . . . . 9 |
38 | 37 | rexlimdvw 2578 | . . . . . . . 8 |
39 | 38 | reximdv 2558 | . . . . . . 7 |
40 | 18, 39 | mpd 13 | . . . . . 6 |
41 | ltdfpr 7409 | . . . . . . . . 9 | |
42 | 41 | 3adant2 1001 | . . . . . . . 8 |
43 | 42 | biimprd 157 | . . . . . . 7 |
44 | 43 | adantr 274 | . . . . . 6 |
45 | 40, 44 | mpd 13 | . . . . 5 |
46 | 45 | ex 114 | . . . 4 |
47 | 46 | adantl 275 | . . 3 |
48 | 10, 47 | ispod 4263 | . 2 |
49 | 48 | mptru 1344 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 963 wtru 1336 wcel 2128 wrex 2436 cop 3563 class class class wbr 3965 wpo 4253 cfv 5167 c1st 6080 c2nd 6081 cnq 7183 cltq 7188 cnp 7194 cltp 7198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-mi 7209 df-lti 7210 df-enq 7250 df-nqqs 7251 df-ltnqqs 7256 df-inp 7369 df-iltp 7373 |
This theorem is referenced by: ltsopr 7499 |
Copyright terms: Public domain | W3C validator |