| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltpopr | Unicode version | ||
| Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7663. (Contributed by Jim Kingdon, 15-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| ltpopr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prop 7542 | 
. . . . . . . 8
 | |
| 2 | prdisj 7559 | 
. . . . . . . 8
 | |
| 3 | 1, 2 | sylan 283 | 
. . . . . . 7
 | 
| 4 | ancom 266 | 
. . . . . . 7
 | |
| 5 | 3, 4 | sylnib 677 | 
. . . . . 6
 | 
| 6 | 5 | nrexdv 2590 | 
. . . . 5
 | 
| 7 | ltdfpr 7573 | 
. . . . . 6
 | |
| 8 | 7 | anidms 397 | 
. . . . 5
 | 
| 9 | 6, 8 | mtbird 674 | 
. . . 4
 | 
| 10 | 9 | adantl 277 | 
. . 3
 | 
| 11 | ltdfpr 7573 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | 3adant3 1019 | 
. . . . . . . . . 10
 | 
| 13 | ltdfpr 7573 | 
. . . . . . . . . . 11
 | |
| 14 | 13 | 3adant1 1017 | 
. . . . . . . . . 10
 | 
| 15 | 12, 14 | anbi12d 473 | 
. . . . . . . . 9
 | 
| 16 | reeanv 2667 | 
. . . . . . . . 9
 | |
| 17 | 15, 16 | bitr4di 198 | 
. . . . . . . 8
 | 
| 18 | 17 | biimpa 296 | 
. . . . . . 7
 | 
| 19 | simprll 537 | 
. . . . . . . . . . 11
 | |
| 20 | prop 7542 | 
. . . . . . . . . . . . . . . . . 18
 | |
| 21 | prltlu 7554 | 
. . . . . . . . . . . . . . . . . 18
 | |
| 22 | 20, 21 | syl3an1 1282 | 
. . . . . . . . . . . . . . . . 17
 | 
| 23 | 22 | 3adant3r 1237 | 
. . . . . . . . . . . . . . . 16
 | 
| 24 | 23 | 3adant2l 1234 | 
. . . . . . . . . . . . . . 15
 | 
| 25 | 24 | 3expb 1206 | 
. . . . . . . . . . . . . 14
 | 
| 26 | 25 | 3ad2antl2 1162 | 
. . . . . . . . . . . . 13
 | 
| 27 | 26 | adantlr 477 | 
. . . . . . . . . . . 12
 | 
| 28 | prop 7542 | 
. . . . . . . . . . . . . . . . 17
 | |
| 29 | prcdnql 7551 | 
. . . . . . . . . . . . . . . . 17
 | |
| 30 | 28, 29 | sylan 283 | 
. . . . . . . . . . . . . . . 16
 | 
| 31 | 30 | adantrl 478 | 
. . . . . . . . . . . . . . 15
 | 
| 32 | 31 | adantrl 478 | 
. . . . . . . . . . . . . 14
 | 
| 33 | 32 | 3ad2antl3 1163 | 
. . . . . . . . . . . . 13
 | 
| 34 | 33 | adantlr 477 | 
. . . . . . . . . . . 12
 | 
| 35 | 27, 34 | mpd 13 | 
. . . . . . . . . . 11
 | 
| 36 | 19, 35 | jca 306 | 
. . . . . . . . . 10
 | 
| 37 | 36 | ex 115 | 
. . . . . . . . 9
 | 
| 38 | 37 | rexlimdvw 2618 | 
. . . . . . . 8
 | 
| 39 | 38 | reximdv 2598 | 
. . . . . . 7
 | 
| 40 | 18, 39 | mpd 13 | 
. . . . . 6
 | 
| 41 | ltdfpr 7573 | 
. . . . . . . . 9
 | |
| 42 | 41 | 3adant2 1018 | 
. . . . . . . 8
 | 
| 43 | 42 | biimprd 158 | 
. . . . . . 7
 | 
| 44 | 43 | adantr 276 | 
. . . . . 6
 | 
| 45 | 40, 44 | mpd 13 | 
. . . . 5
 | 
| 46 | 45 | ex 115 | 
. . . 4
 | 
| 47 | 46 | adantl 277 | 
. . 3
 | 
| 48 | 10, 47 | ispod 4339 | 
. 2
 | 
| 49 | 48 | mptru 1373 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-lti 7374 df-enq 7414 df-nqqs 7415 df-ltnqqs 7420 df-inp 7533 df-iltp 7537 | 
| This theorem is referenced by: ltsopr 7663 | 
| Copyright terms: Public domain | W3C validator |