ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpopr Unicode version

Theorem ltpopr 7710
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7711. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltpopr  |-  <P  Po  P.

Proof of Theorem ltpopr
Dummy variables  r  q  s  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7590 . . . . . . . 8  |-  ( s  e.  P.  ->  <. ( 1st `  s ) ,  ( 2nd `  s
) >.  e.  P. )
2 prdisj 7607 . . . . . . . 8  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
31, 2sylan 283 . . . . . . 7  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
4 ancom 266 . . . . . . 7  |-  ( ( q  e.  ( 1st `  s )  /\  q  e.  ( 2nd `  s
) )  <->  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
53, 4sylnib 678 . . . . . 6  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
65nrexdv 2599 . . . . 5  |-  ( s  e.  P.  ->  -.  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) )
7 ltdfpr 7621 . . . . . 6  |-  ( ( s  e.  P.  /\  s  e.  P. )  ->  ( s  <P  s  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) ) )
87anidms 397 . . . . 5  |-  ( s  e.  P.  ->  (
s  <P  s  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) ) )
96, 8mtbird 675 . . . 4  |-  ( s  e.  P.  ->  -.  s  <P  s )
109adantl 277 . . 3  |-  ( ( T.  /\  s  e. 
P. )  ->  -.  s  <P  s )
11 ltdfpr 7621 . . . . . . . . . . 11  |-  ( ( s  e.  P.  /\  t  e.  P. )  ->  ( s  <P  t  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) ) ) )
12113adant3 1020 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  t  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) ) ) )
13 ltdfpr 7621 . . . . . . . . . . 11  |-  ( ( t  e.  P.  /\  u  e.  P. )  ->  ( t  <P  u  <->  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
14133adant1 1018 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
t  <P  u  <->  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
1512, 14anbi12d 473 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <-> 
( E. q  e. 
Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
16 reeanv 2676 . . . . . . . . 9  |-  ( E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  <->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) )  /\  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
1715, 16bitr4di 198 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <->  E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
1817biimpa 296 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  E. r  e. 
Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
19 simprll 537 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 2nd `  s ) )
20 prop 7590 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
21 prltlu 7602 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
2220, 21syl3an1 1283 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
23223adant3r 1238 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) )  -> 
q  <Q  r )
24233adant2l 1235 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  P.  /\  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  q  <Q  r )
25243expb 1207 . . . . . . . . . . . . . 14  |-  ( ( t  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
26253ad2antl2 1163 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
2726adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
28 prop 7590 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  P.  ->  <. ( 1st `  u ) ,  ( 2nd `  u
) >.  e.  P. )
29 prcdnql 7599 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  u
) ,  ( 2nd `  u ) >.  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3028, 29sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3130adantrl 478 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  P.  /\  ( r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  <Q  r  ->  q  e.  ( 1st `  u
) ) )
3231adantrl 478 . . . . . . . . . . . . . 14  |-  ( ( u  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
33323ad2antl3 1164 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3433adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3527, 34mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 1st `  u ) )
3619, 35jca 306 . . . . . . . . . 10  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) ) )
3736ex 115 . . . . . . . . 9  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3837rexlimdvw 2627 . . . . . . . 8  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3938reximdv 2607 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  E. r  e.  Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4018, 39mpd 13 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) )
41 ltdfpr 7621 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  u  e.  P. )  ->  ( s  <P  u  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
42413adant2 1019 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  u  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4342biimprd 158 . . . . . . 7  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  ( E. q  e.  Q.  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) )  ->  s  <P  u ) )
4443adantr 276 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) )  ->  s  <P  u ) )
4540, 44mpd 13 . . . . 5  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  s  <P  u )
4645ex 115 . . . 4  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  ->  s  <P  u
) )
4746adantl 277 . . 3  |-  ( ( T.  /\  ( s  e.  P.  /\  t  e.  P.  /\  u  e. 
P. ) )  -> 
( ( s  <P 
t  /\  t  <P  u )  ->  s  <P  u ) )
4810, 47ispod 4352 . 2  |-  ( T. 
->  <P  Po  P. )
4948mptru 1382 1  |-  <P  Po  P.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   T. wtru 1374    e. wcel 2176   E.wrex 2485   <.cop 3636   class class class wbr 4045    Po wpo 4342   ` cfv 5272   1stc1st 6226   2ndc2nd 6227   Q.cnq 7395    <Q cltq 7400   P.cnp 7406    <P cltp 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-mi 7421  df-lti 7422  df-enq 7462  df-nqqs 7463  df-ltnqqs 7468  df-inp 7581  df-iltp 7585
This theorem is referenced by:  ltsopr  7711
  Copyright terms: Public domain W3C validator