Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltpopr | Unicode version |
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7570. (Contributed by Jim Kingdon, 15-Dec-2019.) |
Ref | Expression |
---|---|
ltpopr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prop 7449 | . . . . . . . 8 | |
2 | prdisj 7466 | . . . . . . . 8 | |
3 | 1, 2 | sylan 283 | . . . . . . 7 |
4 | ancom 266 | . . . . . . 7 | |
5 | 3, 4 | sylnib 676 | . . . . . 6 |
6 | 5 | nrexdv 2568 | . . . . 5 |
7 | ltdfpr 7480 | . . . . . 6 | |
8 | 7 | anidms 397 | . . . . 5 |
9 | 6, 8 | mtbird 673 | . . . 4 |
10 | 9 | adantl 277 | . . 3 |
11 | ltdfpr 7480 | . . . . . . . . . . 11 | |
12 | 11 | 3adant3 1017 | . . . . . . . . . 10 |
13 | ltdfpr 7480 | . . . . . . . . . . 11 | |
14 | 13 | 3adant1 1015 | . . . . . . . . . 10 |
15 | 12, 14 | anbi12d 473 | . . . . . . . . 9 |
16 | reeanv 2644 | . . . . . . . . 9 | |
17 | 15, 16 | bitr4di 198 | . . . . . . . 8 |
18 | 17 | biimpa 296 | . . . . . . 7 |
19 | simprll 537 | . . . . . . . . . . 11 | |
20 | prop 7449 | . . . . . . . . . . . . . . . . . 18 | |
21 | prltlu 7461 | . . . . . . . . . . . . . . . . . 18 | |
22 | 20, 21 | syl3an1 1271 | . . . . . . . . . . . . . . . . 17 |
23 | 22 | 3adant3r 1235 | . . . . . . . . . . . . . . . 16 |
24 | 23 | 3adant2l 1232 | . . . . . . . . . . . . . . 15 |
25 | 24 | 3expb 1204 | . . . . . . . . . . . . . 14 |
26 | 25 | 3ad2antl2 1160 | . . . . . . . . . . . . 13 |
27 | 26 | adantlr 477 | . . . . . . . . . . . 12 |
28 | prop 7449 | . . . . . . . . . . . . . . . . 17 | |
29 | prcdnql 7458 | . . . . . . . . . . . . . . . . 17 | |
30 | 28, 29 | sylan 283 | . . . . . . . . . . . . . . . 16 |
31 | 30 | adantrl 478 | . . . . . . . . . . . . . . 15 |
32 | 31 | adantrl 478 | . . . . . . . . . . . . . 14 |
33 | 32 | 3ad2antl3 1161 | . . . . . . . . . . . . 13 |
34 | 33 | adantlr 477 | . . . . . . . . . . . 12 |
35 | 27, 34 | mpd 13 | . . . . . . . . . . 11 |
36 | 19, 35 | jca 306 | . . . . . . . . . 10 |
37 | 36 | ex 115 | . . . . . . . . 9 |
38 | 37 | rexlimdvw 2596 | . . . . . . . 8 |
39 | 38 | reximdv 2576 | . . . . . . 7 |
40 | 18, 39 | mpd 13 | . . . . . 6 |
41 | ltdfpr 7480 | . . . . . . . . 9 | |
42 | 41 | 3adant2 1016 | . . . . . . . 8 |
43 | 42 | biimprd 158 | . . . . . . 7 |
44 | 43 | adantr 276 | . . . . . 6 |
45 | 40, 44 | mpd 13 | . . . . 5 |
46 | 45 | ex 115 | . . . 4 |
47 | 46 | adantl 277 | . . 3 |
48 | 10, 47 | ispod 4298 | . 2 |
49 | 48 | mptru 1362 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 w3a 978 wtru 1354 wcel 2146 wrex 2454 cop 3592 class class class wbr 3998 wpo 4288 cfv 5208 c1st 6129 c2nd 6130 cnq 7254 cltq 7259 cnp 7265 cltp 7269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-mi 7280 df-lti 7281 df-enq 7321 df-nqqs 7322 df-ltnqqs 7327 df-inp 7440 df-iltp 7444 |
This theorem is referenced by: ltsopr 7570 |
Copyright terms: Public domain | W3C validator |