Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltpopr | Unicode version |
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7558. (Contributed by Jim Kingdon, 15-Dec-2019.) |
Ref | Expression |
---|---|
ltpopr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prop 7437 | . . . . . . . 8 | |
2 | prdisj 7454 | . . . . . . . 8 | |
3 | 1, 2 | sylan 281 | . . . . . . 7 |
4 | ancom 264 | . . . . . . 7 | |
5 | 3, 4 | sylnib 671 | . . . . . 6 |
6 | 5 | nrexdv 2563 | . . . . 5 |
7 | ltdfpr 7468 | . . . . . 6 | |
8 | 7 | anidms 395 | . . . . 5 |
9 | 6, 8 | mtbird 668 | . . . 4 |
10 | 9 | adantl 275 | . . 3 |
11 | ltdfpr 7468 | . . . . . . . . . . 11 | |
12 | 11 | 3adant3 1012 | . . . . . . . . . 10 |
13 | ltdfpr 7468 | . . . . . . . . . . 11 | |
14 | 13 | 3adant1 1010 | . . . . . . . . . 10 |
15 | 12, 14 | anbi12d 470 | . . . . . . . . 9 |
16 | reeanv 2639 | . . . . . . . . 9 | |
17 | 15, 16 | bitr4di 197 | . . . . . . . 8 |
18 | 17 | biimpa 294 | . . . . . . 7 |
19 | simprll 532 | . . . . . . . . . . 11 | |
20 | prop 7437 | . . . . . . . . . . . . . . . . . 18 | |
21 | prltlu 7449 | . . . . . . . . . . . . . . . . . 18 | |
22 | 20, 21 | syl3an1 1266 | . . . . . . . . . . . . . . . . 17 |
23 | 22 | 3adant3r 1230 | . . . . . . . . . . . . . . . 16 |
24 | 23 | 3adant2l 1227 | . . . . . . . . . . . . . . 15 |
25 | 24 | 3expb 1199 | . . . . . . . . . . . . . 14 |
26 | 25 | 3ad2antl2 1155 | . . . . . . . . . . . . 13 |
27 | 26 | adantlr 474 | . . . . . . . . . . . 12 |
28 | prop 7437 | . . . . . . . . . . . . . . . . 17 | |
29 | prcdnql 7446 | . . . . . . . . . . . . . . . . 17 | |
30 | 28, 29 | sylan 281 | . . . . . . . . . . . . . . . 16 |
31 | 30 | adantrl 475 | . . . . . . . . . . . . . . 15 |
32 | 31 | adantrl 475 | . . . . . . . . . . . . . 14 |
33 | 32 | 3ad2antl3 1156 | . . . . . . . . . . . . 13 |
34 | 33 | adantlr 474 | . . . . . . . . . . . 12 |
35 | 27, 34 | mpd 13 | . . . . . . . . . . 11 |
36 | 19, 35 | jca 304 | . . . . . . . . . 10 |
37 | 36 | ex 114 | . . . . . . . . 9 |
38 | 37 | rexlimdvw 2591 | . . . . . . . 8 |
39 | 38 | reximdv 2571 | . . . . . . 7 |
40 | 18, 39 | mpd 13 | . . . . . 6 |
41 | ltdfpr 7468 | . . . . . . . . 9 | |
42 | 41 | 3adant2 1011 | . . . . . . . 8 |
43 | 42 | biimprd 157 | . . . . . . 7 |
44 | 43 | adantr 274 | . . . . . 6 |
45 | 40, 44 | mpd 13 | . . . . 5 |
46 | 45 | ex 114 | . . . 4 |
47 | 46 | adantl 275 | . . 3 |
48 | 10, 47 | ispod 4289 | . 2 |
49 | 48 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wtru 1349 wcel 2141 wrex 2449 cop 3586 class class class wbr 3989 wpo 4279 cfv 5198 c1st 6117 c2nd 6118 cnq 7242 cltq 7247 cnp 7253 cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-lti 7269 df-enq 7309 df-nqqs 7310 df-ltnqqs 7315 df-inp 7428 df-iltp 7432 |
This theorem is referenced by: ltsopr 7558 |
Copyright terms: Public domain | W3C validator |