ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpopr Unicode version

Theorem ltpopr 7679
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7680. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltpopr  |-  <P  Po  P.

Proof of Theorem ltpopr
Dummy variables  r  q  s  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7559 . . . . . . . 8  |-  ( s  e.  P.  ->  <. ( 1st `  s ) ,  ( 2nd `  s
) >.  e.  P. )
2 prdisj 7576 . . . . . . . 8  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
31, 2sylan 283 . . . . . . 7  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
4 ancom 266 . . . . . . 7  |-  ( ( q  e.  ( 1st `  s )  /\  q  e.  ( 2nd `  s
) )  <->  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
53, 4sylnib 677 . . . . . 6  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
65nrexdv 2590 . . . . 5  |-  ( s  e.  P.  ->  -.  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) )
7 ltdfpr 7590 . . . . . 6  |-  ( ( s  e.  P.  /\  s  e.  P. )  ->  ( s  <P  s  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) ) )
87anidms 397 . . . . 5  |-  ( s  e.  P.  ->  (
s  <P  s  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) ) )
96, 8mtbird 674 . . . 4  |-  ( s  e.  P.  ->  -.  s  <P  s )
109adantl 277 . . 3  |-  ( ( T.  /\  s  e. 
P. )  ->  -.  s  <P  s )
11 ltdfpr 7590 . . . . . . . . . . 11  |-  ( ( s  e.  P.  /\  t  e.  P. )  ->  ( s  <P  t  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) ) ) )
12113adant3 1019 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  t  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) ) ) )
13 ltdfpr 7590 . . . . . . . . . . 11  |-  ( ( t  e.  P.  /\  u  e.  P. )  ->  ( t  <P  u  <->  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
14133adant1 1017 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
t  <P  u  <->  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
1512, 14anbi12d 473 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <-> 
( E. q  e. 
Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
16 reeanv 2667 . . . . . . . . 9  |-  ( E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  <->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) )  /\  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
1715, 16bitr4di 198 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <->  E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
1817biimpa 296 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  E. r  e. 
Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
19 simprll 537 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 2nd `  s ) )
20 prop 7559 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
21 prltlu 7571 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
2220, 21syl3an1 1282 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
23223adant3r 1237 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) )  -> 
q  <Q  r )
24233adant2l 1234 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  P.  /\  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  q  <Q  r )
25243expb 1206 . . . . . . . . . . . . . 14  |-  ( ( t  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
26253ad2antl2 1162 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
2726adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
28 prop 7559 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  P.  ->  <. ( 1st `  u ) ,  ( 2nd `  u
) >.  e.  P. )
29 prcdnql 7568 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  u
) ,  ( 2nd `  u ) >.  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3028, 29sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3130adantrl 478 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  P.  /\  ( r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  <Q  r  ->  q  e.  ( 1st `  u
) ) )
3231adantrl 478 . . . . . . . . . . . . . 14  |-  ( ( u  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
33323ad2antl3 1163 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3433adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3527, 34mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 1st `  u ) )
3619, 35jca 306 . . . . . . . . . 10  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) ) )
3736ex 115 . . . . . . . . 9  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3837rexlimdvw 2618 . . . . . . . 8  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3938reximdv 2598 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  E. r  e.  Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4018, 39mpd 13 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) )
41 ltdfpr 7590 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  u  e.  P. )  ->  ( s  <P  u  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
42413adant2 1018 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  u  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4342biimprd 158 . . . . . . 7  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  ( E. q  e.  Q.  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) )  ->  s  <P  u ) )
4443adantr 276 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) )  ->  s  <P  u ) )
4540, 44mpd 13 . . . . 5  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  s  <P  u )
4645ex 115 . . . 4  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  ->  s  <P  u
) )
4746adantl 277 . . 3  |-  ( ( T.  /\  ( s  e.  P.  /\  t  e.  P.  /\  u  e. 
P. ) )  -> 
( ( s  <P 
t  /\  t  <P  u )  ->  s  <P  u ) )
4810, 47ispod 4340 . 2  |-  ( T. 
->  <P  Po  P. )
4948mptru 1373 1  |-  <P  Po  P.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   T. wtru 1365    e. wcel 2167   E.wrex 2476   <.cop 3626   class class class wbr 4034    Po wpo 4330   ` cfv 5259   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    <Q cltq 7369   P.cnp 7375    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-mi 7390  df-lti 7391  df-enq 7431  df-nqqs 7432  df-ltnqqs 7437  df-inp 7550  df-iltp 7554
This theorem is referenced by:  ltsopr  7680
  Copyright terms: Public domain W3C validator