ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addasssrg Unicode version

Theorem addasssrg 7758
Description: Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
addasssrg  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  +R  B
)  +R  C )  =  ( A  +R  ( B  +R  C
) ) )

Proof of Theorem addasssrg
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7729 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 7747 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  )
3 addsrpr 7747 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )
4 addsrpr 7747 . 2  |-  ( ( ( ( x  +P.  z )  e.  P.  /\  ( y  +P.  w
)  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. ( x  +P.  z
) ,  ( y  +P.  w ) >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( x  +P.  z
)  +P.  v ) ,  ( ( y  +P.  w )  +P.  u ) >. ]  ~R  )
5 addsrpr 7747 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( z  +P.  v )  e.  P.  /\  ( w  +P.  u
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. ( z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )  =  [ <. (
x  +P.  ( z  +P.  v ) ) ,  ( y  +P.  (
w  +P.  u )
) >. ]  ~R  )
6 addclpr 7539 . . . 4  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  +P.  z
)  e.  P. )
7 addclpr 7539 . . . 4  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  +P.  w
)  e.  P. )
86, 7anim12i 338 . . 3  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
98an4s 588 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
10 addclpr 7539 . . . 4  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  +P.  v
)  e.  P. )
11 addclpr 7539 . . . 4  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  +P.  u
)  e.  P. )
1210, 11anim12i 338 . . 3  |-  ( ( ( z  e.  P.  /\  v  e.  P. )  /\  ( w  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
1312an4s 588 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
14 addassprg 7581 . . . . 5  |-  ( ( x  e.  P.  /\  z  e.  P.  /\  v  e.  P. )  ->  (
( x  +P.  z
)  +P.  v )  =  ( x  +P.  ( z  +P.  v
) ) )
15143adant1r 1231 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  z  e.  P.  /\  v  e.  P. )  ->  ( ( x  +P.  z )  +P.  v
)  =  ( x  +P.  ( z  +P.  v ) ) )
16153adant2r 1233 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  v  e.  P. )  ->  ( ( x  +P.  z )  +P.  v )  =  ( x  +P.  ( z  +P.  v ) ) )
17163adant3r 1235 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  z )  +P.  v )  =  ( x  +P.  ( z  +P.  v ) ) )
18 addassprg 7581 . . . . 5  |-  ( ( y  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
( y  +P.  w
)  +P.  u )  =  ( y  +P.  ( w  +P.  u
) ) )
19183adant1l 1230 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  w  e.  P.  /\  u  e.  P. )  ->  ( ( y  +P.  w )  +P.  u
)  =  ( y  +P.  ( w  +P.  u ) ) )
20193adant2l 1232 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  u  e.  P. )  ->  ( ( y  +P.  w )  +P.  u )  =  ( y  +P.  ( w  +P.  u ) ) )
21203adant3l 1234 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
y  +P.  w )  +P.  u )  =  ( y  +P.  ( w  +P.  u ) ) )
221, 2, 3, 4, 5, 9, 13, 17, 21ecoviass 6648 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  +R  B
)  +R  C )  =  ( A  +R  ( B  +R  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148  (class class class)co 5878   P.cnp 7293    +P. cpp 7295    ~R cer 7298   R.cnr 7299    +R cplr 7303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-2o 6421  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-mqqs 7352  df-1nqqs 7353  df-rq 7354  df-ltnqqs 7355  df-enq0 7426  df-nq0 7427  df-0nq0 7428  df-plq0 7429  df-mq0 7430  df-inp 7468  df-iplp 7470  df-enr 7728  df-nr 7729  df-plr 7730
This theorem is referenced by:  ltm1sr  7779  caucvgsrlemoffval  7798  caucvgsrlemoffcau  7800  caucvgsrlemoffres  7802  caucvgsr  7804  map2psrprg  7807  axaddass  7874  axmulass  7875  axdistr  7876
  Copyright terms: Public domain W3C validator