| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulassnqg | Unicode version | ||
| Description: Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| Ref | Expression |
|---|---|
| mulassnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7491 |
. 2
| |
| 2 | mulpipqqs 7516 |
. 2
| |
| 3 | mulpipqqs 7516 |
. 2
| |
| 4 | mulpipqqs 7516 |
. 2
| |
| 5 | mulpipqqs 7516 |
. 2
| |
| 6 | mulclpi 7471 |
. . . 4
| |
| 7 | 6 | ad2ant2r 509 |
. . 3
|
| 8 | mulclpi 7471 |
. . . 4
| |
| 9 | 8 | ad2ant2l 508 |
. . 3
|
| 10 | 7, 9 | jca 306 |
. 2
|
| 11 | mulclpi 7471 |
. . . 4
| |
| 12 | 11 | ad2ant2r 509 |
. . 3
|
| 13 | mulclpi 7471 |
. . . 4
| |
| 14 | 13 | ad2ant2l 508 |
. . 3
|
| 15 | 12, 14 | jca 306 |
. 2
|
| 16 | mulasspig 7475 |
. . . . 5
| |
| 17 | 16 | 3adant1r 1234 |
. . . 4
|
| 18 | 17 | 3adant2r 1236 |
. . 3
|
| 19 | 18 | 3adant3r 1238 |
. 2
|
| 20 | mulasspig 7475 |
. . . . 5
| |
| 21 | 20 | 3adant1l 1233 |
. . . 4
|
| 22 | 21 | 3adant2l 1235 |
. . 3
|
| 23 | 22 | 3adant3l 1237 |
. 2
|
| 24 | 1, 2, 3, 4, 5, 10, 15, 19, 23 | ecoviass 6750 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-mi 7449 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-mqqs 7493 |
| This theorem is referenced by: recmulnqg 7534 halfnqq 7553 prarloclemarch 7561 ltrnqg 7563 addnqprl 7672 addnqpru 7673 appdivnq 7706 mulnqprl 7711 mulnqpru 7712 mullocprlem 7713 mulassprg 7724 1idprl 7733 1idpru 7734 recexprlem1ssl 7776 recexprlem1ssu 7777 |
| Copyright terms: Public domain | W3C validator |