ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulassnqg Unicode version

Theorem mulassnqg 7093
Description: Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulassnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( A  .Q  ( B  .Q  C
) ) )

Proof of Theorem mulassnqg
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7057 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 mulpipqqs 7082 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  )
3 mulpipqqs 7082 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )
4 mulpipqqs 7082 . 2  |-  ( ( ( ( x  .N  z )  e.  N.  /\  ( y  .N  w
)  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( x  .N  z
) ,  ( y  .N  w ) >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( x  .N  z
)  .N  v ) ,  ( ( y  .N  w )  .N  u ) >. ]  ~Q  )
5 mulpipqqs 7082 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( z  .N  v )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. ( z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )  =  [ <. (
x  .N  ( z  .N  v ) ) ,  ( y  .N  ( w  .N  u
) ) >. ]  ~Q  )
6 mulclpi 7037 . . . 4  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  e.  N. )
76ad2ant2r 496 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( x  .N  z )  e.  N. )
8 mulclpi 7037 . . . 4  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
98ad2ant2l 495 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  e.  N. )
107, 9jca 302 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  z )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
11 mulclpi 7037 . . . 4  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1211ad2ant2r 496 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
13 mulclpi 7037 . . . 4  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1413ad2ant2l 495 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
1512, 14jca 302 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  v )  e.  N.  /\  (
w  .N  u )  e.  N. ) )
16 mulasspig 7041 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N.  /\  v  e.  N. )  ->  (
( x  .N  z
)  .N  v )  =  ( x  .N  ( z  .N  v
) ) )
17163adant1r 1177 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  z  e.  N.  /\  v  e.  N. )  ->  ( ( x  .N  z )  .N  v
)  =  ( x  .N  ( z  .N  v ) ) )
18173adant2r 1179 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  v  e.  N. )  ->  ( ( x  .N  z )  .N  v )  =  ( x  .N  ( z  .N  v ) ) )
19183adant3r 1181 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  z )  .N  v )  =  ( x  .N  (
z  .N  v ) ) )
20 mulasspig 7041 . . . . 5  |-  ( ( y  e.  N.  /\  w  e.  N.  /\  u  e.  N. )  ->  (
( y  .N  w
)  .N  u )  =  ( y  .N  ( w  .N  u
) ) )
21203adant1l 1176 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  w  e.  N.  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u
)  =  ( y  .N  ( w  .N  u ) ) )
22213adant2l 1178 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u )  =  ( y  .N  ( w  .N  u ) ) )
23223adant3l 1180 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
y  .N  w )  .N  u )  =  ( y  .N  (
w  .N  u ) ) )
241, 2, 3, 4, 5, 10, 15, 19, 23ecoviass 6469 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( A  .Q  ( B  .Q  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 930    = wceq 1299    e. wcel 1448  (class class class)co 5706   N.cnpi 6981    .N cmi 6983    ~Q ceq 6988   Q.cnq 6989    .Q cmq 6992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-mi 7015  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-mqqs 7059
This theorem is referenced by:  recmulnqg  7100  halfnqq  7119  prarloclemarch  7127  ltrnqg  7129  addnqprl  7238  addnqpru  7239  appdivnq  7272  mulnqprl  7277  mulnqpru  7278  mullocprlem  7279  mulassprg  7290  1idprl  7299  1idpru  7300  recexprlem1ssl  7342  recexprlem1ssu  7343
  Copyright terms: Public domain W3C validator