ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulassnqg Unicode version

Theorem mulassnqg 7451
Description: Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulassnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( A  .Q  ( B  .Q  C
) ) )

Proof of Theorem mulassnqg
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7415 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 mulpipqqs 7440 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  )
3 mulpipqqs 7440 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )
4 mulpipqqs 7440 . 2  |-  ( ( ( ( x  .N  z )  e.  N.  /\  ( y  .N  w
)  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( x  .N  z
) ,  ( y  .N  w ) >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( x  .N  z
)  .N  v ) ,  ( ( y  .N  w )  .N  u ) >. ]  ~Q  )
5 mulpipqqs 7440 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( z  .N  v )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. ( z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )  =  [ <. (
x  .N  ( z  .N  v ) ) ,  ( y  .N  ( w  .N  u
) ) >. ]  ~Q  )
6 mulclpi 7395 . . . 4  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  e.  N. )
76ad2ant2r 509 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( x  .N  z )  e.  N. )
8 mulclpi 7395 . . . 4  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
98ad2ant2l 508 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  e.  N. )
107, 9jca 306 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  z )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
11 mulclpi 7395 . . . 4  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1211ad2ant2r 509 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
13 mulclpi 7395 . . . 4  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1413ad2ant2l 508 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
1512, 14jca 306 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  v )  e.  N.  /\  (
w  .N  u )  e.  N. ) )
16 mulasspig 7399 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N.  /\  v  e.  N. )  ->  (
( x  .N  z
)  .N  v )  =  ( x  .N  ( z  .N  v
) ) )
17163adant1r 1233 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  z  e.  N.  /\  v  e.  N. )  ->  ( ( x  .N  z )  .N  v
)  =  ( x  .N  ( z  .N  v ) ) )
18173adant2r 1235 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  v  e.  N. )  ->  ( ( x  .N  z )  .N  v )  =  ( x  .N  ( z  .N  v ) ) )
19183adant3r 1237 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  z )  .N  v )  =  ( x  .N  (
z  .N  v ) ) )
20 mulasspig 7399 . . . . 5  |-  ( ( y  e.  N.  /\  w  e.  N.  /\  u  e.  N. )  ->  (
( y  .N  w
)  .N  u )  =  ( y  .N  ( w  .N  u
) ) )
21203adant1l 1232 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  w  e.  N.  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u
)  =  ( y  .N  ( w  .N  u ) ) )
22213adant2l 1234 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u )  =  ( y  .N  ( w  .N  u ) ) )
23223adant3l 1236 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
y  .N  w )  .N  u )  =  ( y  .N  (
w  .N  u ) ) )
241, 2, 3, 4, 5, 10, 15, 19, 23ecoviass 6704 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( A  .Q  ( B  .Q  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5922   N.cnpi 7339    .N cmi 7341    ~Q ceq 7346   Q.cnq 7347    .Q cmq 7350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417
This theorem is referenced by:  recmulnqg  7458  halfnqq  7477  prarloclemarch  7485  ltrnqg  7487  addnqprl  7596  addnqpru  7597  appdivnq  7630  mulnqprl  7635  mulnqpru  7636  mullocprlem  7637  mulassprg  7648  1idprl  7657  1idpru  7658  recexprlem1ssl  7700  recexprlem1ssu  7701
  Copyright terms: Public domain W3C validator