Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulassnqg | Unicode version |
Description: Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
Ref | Expression |
---|---|
mulassnqg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7310 | . 2 | |
2 | mulpipqqs 7335 | . 2 | |
3 | mulpipqqs 7335 | . 2 | |
4 | mulpipqqs 7335 | . 2 | |
5 | mulpipqqs 7335 | . 2 | |
6 | mulclpi 7290 | . . . 4 | |
7 | 6 | ad2ant2r 506 | . . 3 |
8 | mulclpi 7290 | . . . 4 | |
9 | 8 | ad2ant2l 505 | . . 3 |
10 | 7, 9 | jca 304 | . 2 |
11 | mulclpi 7290 | . . . 4 | |
12 | 11 | ad2ant2r 506 | . . 3 |
13 | mulclpi 7290 | . . . 4 | |
14 | 13 | ad2ant2l 505 | . . 3 |
15 | 12, 14 | jca 304 | . 2 |
16 | mulasspig 7294 | . . . . 5 | |
17 | 16 | 3adant1r 1226 | . . . 4 |
18 | 17 | 3adant2r 1228 | . . 3 |
19 | 18 | 3adant3r 1230 | . 2 |
20 | mulasspig 7294 | . . . . 5 | |
21 | 20 | 3adant1l 1225 | . . . 4 |
22 | 21 | 3adant2l 1227 | . . 3 |
23 | 22 | 3adant3l 1229 | . 2 |
24 | 1, 2, 3, 4, 5, 10, 15, 19, 23 | ecoviass 6623 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 (class class class)co 5853 cnpi 7234 cmi 7236 ceq 7241 cnq 7242 cmq 7245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-mqqs 7312 |
This theorem is referenced by: recmulnqg 7353 halfnqq 7372 prarloclemarch 7380 ltrnqg 7382 addnqprl 7491 addnqpru 7492 appdivnq 7525 mulnqprl 7530 mulnqpru 7531 mullocprlem 7532 mulassprg 7543 1idprl 7552 1idpru 7553 recexprlem1ssl 7595 recexprlem1ssu 7596 |
Copyright terms: Public domain | W3C validator |