Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi4 | Unicode version |
Description: Lemma for isbth 6944. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 |
Ref | Expression |
---|---|
sbthlemi4 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4624 | . 2 | |
2 | difss 3253 | . . . . . . . 8 | |
3 | sseq2 3171 | . . . . . . . 8 | |
4 | 2, 3 | mpbiri 167 | . . . . . . 7 |
5 | ssdmres 4913 | . . . . . . 7 | |
6 | 4, 5 | sylib 121 | . . . . . 6 |
7 | dfdm4 4803 | . . . . . 6 | |
8 | 6, 7 | eqtr3di 2218 | . . . . 5 |
9 | 8 | adantr 274 | . . . 4 |
10 | 9 | 3ad2ant2 1014 | . . 3 EXMID |
11 | funcnvres 5271 | . . . . . . 7 | |
12 | 11 | 3ad2ant3 1015 | . . . . . 6 EXMID |
13 | sbthlem.1 | . . . . . . . . 9 | |
14 | sbthlem.2 | . . . . . . . . 9 | |
15 | 13, 14 | sbthlemi3 6936 | . . . . . . . 8 EXMID |
16 | 15 | reseq2d 4891 | . . . . . . 7 EXMID |
17 | 16 | 3adant3 1012 | . . . . . 6 EXMID |
18 | 12, 17 | eqtrd 2203 | . . . . 5 EXMID |
19 | 18 | rneqd 4840 | . . . 4 EXMID |
20 | 19 | 3adant2l 1227 | . . 3 EXMID |
21 | 10, 20 | eqtrd 2203 | . 2 EXMID |
22 | 1, 21 | eqtr4id 2222 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 cab 2156 cvv 2730 cdif 3118 wss 3121 cuni 3796 EXMIDwem 4180 ccnv 4610 cdm 4611 crn 4612 cres 4613 cima 4614 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-exmid 4181 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 |
This theorem is referenced by: sbthlemi6 6939 sbthlemi8 6941 |
Copyright terms: Public domain | W3C validator |