ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi4 Unicode version

Theorem sbthlemi4 6961
Description: Lemma for isbth 6968. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi4
StepHypRef Expression
1 df-ima 4641 . 2  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
2 difss 3263 . . . . . . . 8  |-  ( B 
\  ( f " U. D ) )  C_  B
3 sseq2 3181 . . . . . . . 8  |-  ( dom  g  =  B  -> 
( ( B  \ 
( f " U. D ) )  C_  dom  g  <->  ( B  \ 
( f " U. D ) )  C_  B ) )
42, 3mpbiri 168 . . . . . . 7  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  C_  dom  g )
5 ssdmres 4931 . . . . . . 7  |-  ( ( B  \  ( f
" U. D ) )  C_  dom  g  <->  dom  ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( B  \  (
f " U. D
) ) )
64, 5sylib 122 . . . . . 6  |-  ( dom  g  =  B  ->  dom  ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( B  \ 
( f " U. D ) ) )
7 dfdm4 4821 . . . . . 6  |-  dom  (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )
86, 7eqtr3di 2225 . . . . 5  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) ) )
98adantr 276 . . . 4  |-  ( ( dom  g  =  B  /\  ran  g  C_  A )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
1093ad2ant2 1019 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
11 funcnvres 5291 . . . . . . 7  |-  ( Fun  `' g  ->  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
12113ad2ant3 1020 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
13 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
14 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1513, 14sbthlemi3 6960 . . . . . . . 8  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
1615reseq2d 4909 . . . . . . 7  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( `' g  |`  ( g "
( B  \  (
f " U. D
) ) ) )  =  ( `' g  |`  ( A  \  U. D ) ) )
17163adant3 1017 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) )  =  ( `' g  |`  ( A  \ 
U. D ) ) )
1812, 17eqtrd 2210 . . . . 5  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( A  \  U. D
) ) )
1918rneqd 4858 . . . 4  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ran  `' (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
20193adant2l 1232 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
2110, 20eqtrd 2210 . 2  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
221, 21eqtr4id 2229 1  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   _Vcvv 2739    \ cdif 3128    C_ wss 3131   U.cuni 3811  EXMIDwem 4196   `'ccnv 4627   dom cdm 4628   ran crn 4629    |` cres 4630   "cima 4631   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-exmid 4197  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220
This theorem is referenced by:  sbthlemi6  6963  sbthlemi8  6965
  Copyright terms: Public domain W3C validator