ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi4 Unicode version

Theorem sbthlemi4 6856
Description: Lemma for isbth 6863. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi4
StepHypRef Expression
1 df-ima 4560 . 2  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
2 dfdm4 4739 . . . . . 6  |-  dom  (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )
3 difss 3207 . . . . . . . 8  |-  ( B 
\  ( f " U. D ) )  C_  B
4 sseq2 3126 . . . . . . . 8  |-  ( dom  g  =  B  -> 
( ( B  \ 
( f " U. D ) )  C_  dom  g  <->  ( B  \ 
( f " U. D ) )  C_  B ) )
53, 4mpbiri 167 . . . . . . 7  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  C_  dom  g )
6 ssdmres 4849 . . . . . . 7  |-  ( ( B  \  ( f
" U. D ) )  C_  dom  g  <->  dom  ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( B  \  (
f " U. D
) ) )
75, 6sylib 121 . . . . . 6  |-  ( dom  g  =  B  ->  dom  ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( B  \ 
( f " U. D ) ) )
82, 7syl5reqr 2188 . . . . 5  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) ) )
98adantr 274 . . . 4  |-  ( ( dom  g  =  B  /\  ran  g  C_  A )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
1093ad2ant2 1004 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
11 funcnvres 5204 . . . . . . 7  |-  ( Fun  `' g  ->  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
12113ad2ant3 1005 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
13 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
14 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1513, 14sbthlemi3 6855 . . . . . . . 8  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
1615reseq2d 4827 . . . . . . 7  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( `' g  |`  ( g "
( B  \  (
f " U. D
) ) ) )  =  ( `' g  |`  ( A  \  U. D ) ) )
17163adant3 1002 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) )  =  ( `' g  |`  ( A  \ 
U. D ) ) )
1812, 17eqtrd 2173 . . . . 5  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( A  \  U. D
) ) )
1918rneqd 4776 . . . 4  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ran  `' (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
20193adant2l 1211 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
2110, 20eqtrd 2173 . 2  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
221, 21eqtr4id 2192 1  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   {cab 2126   _Vcvv 2689    \ cdif 3073    C_ wss 3076   U.cuni 3744  EXMIDwem 4126   `'ccnv 4546   dom cdm 4547   ran crn 4548    |` cres 4549   "cima 4550   Fun wfun 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-exmid 4127  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-fun 5133
This theorem is referenced by:  sbthlemi6  6858  sbthlemi8  6860
  Copyright terms: Public domain W3C validator