ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi4 Unicode version

Theorem sbthlemi4 7127
Description: Lemma for isbth 7134. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi4
StepHypRef Expression
1 df-ima 4732 . 2  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
2 difss 3330 . . . . . . . 8  |-  ( B 
\  ( f " U. D ) )  C_  B
3 sseq2 3248 . . . . . . . 8  |-  ( dom  g  =  B  -> 
( ( B  \ 
( f " U. D ) )  C_  dom  g  <->  ( B  \ 
( f " U. D ) )  C_  B ) )
42, 3mpbiri 168 . . . . . . 7  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  C_  dom  g )
5 ssdmres 5027 . . . . . . 7  |-  ( ( B  \  ( f
" U. D ) )  C_  dom  g  <->  dom  ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( B  \  (
f " U. D
) ) )
64, 5sylib 122 . . . . . 6  |-  ( dom  g  =  B  ->  dom  ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( B  \ 
( f " U. D ) ) )
7 dfdm4 4915 . . . . . 6  |-  dom  (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )
86, 7eqtr3di 2277 . . . . 5  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) ) )
98adantr 276 . . . 4  |-  ( ( dom  g  =  B  /\  ran  g  C_  A )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
1093ad2ant2 1043 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
11 funcnvres 5394 . . . . . . 7  |-  ( Fun  `' g  ->  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
12113ad2ant3 1044 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
13 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
14 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1513, 14sbthlemi3 7126 . . . . . . . 8  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
1615reseq2d 5005 . . . . . . 7  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( `' g  |`  ( g "
( B  \  (
f " U. D
) ) ) )  =  ( `' g  |`  ( A  \  U. D ) ) )
17163adant3 1041 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) )  =  ( `' g  |`  ( A  \ 
U. D ) ) )
1812, 17eqtrd 2262 . . . . 5  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( A  \  U. D
) ) )
1918rneqd 4953 . . . 4  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ran  `' (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
20193adant2l 1256 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
2110, 20eqtrd 2262 . 2  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
221, 21eqtr4id 2281 1  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    \ cdif 3194    C_ wss 3197   U.cuni 3888  EXMIDwem 4278   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721   "cima 4722   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-exmid 4279  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320
This theorem is referenced by:  sbthlemi6  7129  sbthlemi8  7131
  Copyright terms: Public domain W3C validator