ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi4 Unicode version

Theorem sbthlemi4 7026
Description: Lemma for isbth 7033. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlemi4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlemi4
StepHypRef Expression
1 df-ima 4676 . 2  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
2 difss 3289 . . . . . . . 8  |-  ( B 
\  ( f " U. D ) )  C_  B
3 sseq2 3207 . . . . . . . 8  |-  ( dom  g  =  B  -> 
( ( B  \ 
( f " U. D ) )  C_  dom  g  <->  ( B  \ 
( f " U. D ) )  C_  B ) )
42, 3mpbiri 168 . . . . . . 7  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  C_  dom  g )
5 ssdmres 4968 . . . . . . 7  |-  ( ( B  \  ( f
" U. D ) )  C_  dom  g  <->  dom  ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( B  \  (
f " U. D
) ) )
64, 5sylib 122 . . . . . 6  |-  ( dom  g  =  B  ->  dom  ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( B  \ 
( f " U. D ) ) )
7 dfdm4 4858 . . . . . 6  |-  dom  (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )
86, 7eqtr3di 2244 . . . . 5  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) ) )
98adantr 276 . . . 4  |-  ( ( dom  g  =  B  /\  ran  g  C_  A )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
1093ad2ant2 1021 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  `' ( g  |`  ( B  \  (
f " U. D
) ) ) )
11 funcnvres 5331 . . . . . . 7  |-  ( Fun  `' g  ->  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
12113ad2ant3 1022 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
13 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
14 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1513, 14sbthlemi3 7025 . . . . . . . 8  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
1615reseq2d 4946 . . . . . . 7  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( `' g  |`  ( g "
( B  \  (
f " U. D
) ) ) )  =  ( `' g  |`  ( A  \  U. D ) ) )
17163adant3 1019 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) )  =  ( `' g  |`  ( A  \ 
U. D ) ) )
1812, 17eqtrd 2229 . . . . 5  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( A  \  U. D
) ) )
1918rneqd 4895 . . . 4  |-  ( (EXMID  /\ 
ran  g  C_  A  /\  Fun  `' g )  ->  ran  `' (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
20193adant2l 1234 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
2110, 20eqtrd 2229 . 2  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
221, 21eqtr4id 2248 1  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182   _Vcvv 2763    \ cdif 3154    C_ wss 3157   U.cuni 3839  EXMIDwem 4227   `'ccnv 4662   dom cdm 4663   ran crn 4664    |` cres 4665   "cima 4666   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-exmid 4228  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260
This theorem is referenced by:  sbthlemi6  7028  sbthlemi8  7030
  Copyright terms: Public domain W3C validator