| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassnqg | Unicode version | ||
| Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| addassnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7415 |
. 2
| |
| 2 | addpipqqs 7437 |
. 2
| |
| 3 | addpipqqs 7437 |
. 2
| |
| 4 | addpipqqs 7437 |
. 2
| |
| 5 | addpipqqs 7437 |
. 2
| |
| 6 | mulclpi 7395 |
. . . . 5
| |
| 7 | 6 | ad2ant2rl 511 |
. . . 4
|
| 8 | mulclpi 7395 |
. . . . 5
| |
| 9 | 8 | ad2ant2lr 510 |
. . . 4
|
| 10 | addclpi 7394 |
. . . 4
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . 3
|
| 12 | mulclpi 7395 |
. . . 4
| |
| 13 | 12 | ad2ant2l 508 |
. . 3
|
| 14 | 11, 13 | jca 306 |
. 2
|
| 15 | mulclpi 7395 |
. . . . 5
| |
| 16 | 15 | ad2ant2rl 511 |
. . . 4
|
| 17 | mulclpi 7395 |
. . . . 5
| |
| 18 | 17 | ad2ant2lr 510 |
. . . 4
|
| 19 | addclpi 7394 |
. . . 4
| |
| 20 | 16, 18, 19 | syl2anc 411 |
. . 3
|
| 21 | mulclpi 7395 |
. . . 4
| |
| 22 | 21 | ad2ant2l 508 |
. . 3
|
| 23 | 20, 22 | jca 306 |
. 2
|
| 24 | simp1l 1023 |
. . . . 5
| |
| 25 | simp2r 1026 |
. . . . . 6
| |
| 26 | simp3r 1028 |
. . . . . 6
| |
| 27 | 25, 26, 21 | syl2anc 411 |
. . . . 5
|
| 28 | mulclpi 7395 |
. . . . 5
| |
| 29 | 24, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | simp1r 1024 |
. . . . 5
| |
| 31 | simp2l 1025 |
. . . . . 6
| |
| 32 | 31, 26, 15 | syl2anc 411 |
. . . . 5
|
| 33 | mulclpi 7395 |
. . . . 5
| |
| 34 | 30, 32, 33 | syl2anc 411 |
. . . 4
|
| 35 | simp3l 1027 |
. . . . . 6
| |
| 36 | 25, 35, 17 | syl2anc 411 |
. . . . 5
|
| 37 | mulclpi 7395 |
. . . . 5
| |
| 38 | 30, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | addasspig 7397 |
. . . 4
| |
| 40 | 29, 34, 38, 39 | syl3anc 1249 |
. . 3
|
| 41 | mulcompig 7398 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | distrpig 7400 |
. . . . . . . 8
| |
| 44 | 43 | 3coml 1212 |
. . . . . . 7
|
| 45 | addclpi 7394 |
. . . . . . . . . 10
| |
| 46 | mulcompig 7398 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | sylan2 286 |
. . . . . . . . 9
|
| 48 | 47 | ancoms 268 |
. . . . . . . 8
|
| 49 | 48 | 3impa 1196 |
. . . . . . 7
|
| 50 | mulcompig 7398 |
. . . . . . . . . 10
| |
| 51 | 50 | ancoms 268 |
. . . . . . . . 9
|
| 52 | 51 | 3adant2 1018 |
. . . . . . . 8
|
| 53 | mulcompig 7398 |
. . . . . . . . . 10
| |
| 54 | 53 | ancoms 268 |
. . . . . . . . 9
|
| 55 | 54 | 3adant1 1017 |
. . . . . . . 8
|
| 56 | 52, 55 | oveq12d 5940 |
. . . . . . 7
|
| 57 | 44, 49, 56 | 3eqtr3d 2237 |
. . . . . 6
|
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | mulasspig 7399 |
. . . . . 6
| |
| 60 | 59 | adantl 277 |
. . . . 5
|
| 61 | mulclpi 7395 |
. . . . . 6
| |
| 62 | 61 | adantl 277 |
. . . . 5
|
| 63 | 42, 58, 60, 62, 24, 30, 25, 31, 26 | caovdilemd 6115 |
. . . 4
|
| 64 | mulasspig 7399 |
. . . . . . 7
| |
| 65 | 64 | 3adant1l 1232 |
. . . . . 6
|
| 66 | 65 | 3adant2l 1234 |
. . . . 5
|
| 67 | 66 | 3adant3r 1237 |
. . . 4
|
| 68 | 63, 67 | oveq12d 5940 |
. . 3
|
| 69 | distrpig 7400 |
. . . . 5
| |
| 70 | 30, 32, 36, 69 | syl3anc 1249 |
. . . 4
|
| 71 | 70 | oveq2d 5938 |
. . 3
|
| 72 | 40, 68, 71 | 3eqtr4d 2239 |
. 2
|
| 73 | mulasspig 7399 |
. . . . 5
| |
| 74 | 73 | 3adant1l 1232 |
. . . 4
|
| 75 | 74 | 3adant2l 1234 |
. . 3
|
| 76 | 75 | 3adant3l 1236 |
. 2
|
| 77 | 1, 2, 3, 4, 5, 14, 23, 72, 76 | ecoviass 6704 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-plpq 7411 df-enq 7414 df-nqqs 7415 df-plqqs 7416 |
| This theorem is referenced by: ltaddnq 7474 addlocprlemeqgt 7599 addassprg 7646 ltexprlemloc 7674 ltexprlemrl 7677 ltexprlemru 7679 addcanprleml 7681 addcanprlemu 7682 cauappcvgprlemdisj 7718 cauappcvgprlemloc 7719 cauappcvgprlemladdfl 7722 cauappcvgprlemladdru 7723 cauappcvgprlemladdrl 7724 cauappcvgprlem1 7726 caucvgprlemloc 7742 caucvgprlemladdrl 7745 caucvgprprlemloccalc 7751 |
| Copyright terms: Public domain | W3C validator |