ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnqg Unicode version

Theorem addassnqg 7444
Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
Assertion
Ref Expression
addassnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +Q  B
)  +Q  C )  =  ( A  +Q  ( B  +Q  C
) ) )

Proof of Theorem addassnqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7410 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 addpipqqs 7432 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  )
3 addpipqqs 7432 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
4 addpipqqs 7432 . 2  |-  ( ( ( ( ( x  .N  w )  +N  ( y  .N  z
) )  e.  N.  /\  ( y  .N  w
)  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( ( x  .N  w )  +N  (
y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( ( ( x  .N  w )  +N  ( y  .N  z
) )  .N  u
)  +N  ( ( y  .N  w )  .N  v ) ) ,  ( ( y  .N  w )  .N  u ) >. ]  ~Q  )
5 addpipqqs 7432 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( ( z  .N  u )  +N  ( w  .N  v
) )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. ( ( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )  =  [ <. (
( x  .N  (
w  .N  u ) )  +N  ( y  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) ) ) ,  ( y  .N  ( w  .N  u
) ) >. ]  ~Q  )
6 mulclpi 7390 . . . . 5  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
76ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
8 mulclpi 7390 . . . . 5  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
98ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
10 addclpi 7389 . . . 4  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  ->  ( ( x  .N  w )  +N  (
y  .N  z ) )  e.  N. )
117, 9, 10syl2anc 411 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  e. 
N. )
12 mulclpi 7390 . . . 4  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
1312ad2ant2l 508 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  e.  N. )
1411, 13jca 306 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
( x  .N  w
)  +N  ( y  .N  z ) )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
15 mulclpi 7390 . . . . 5  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  e.  N. )
1615ad2ant2rl 511 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
17 mulclpi 7390 . . . . 5  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  e.  N. )
1817ad2ant2lr 510 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
19 addclpi 7389 . . . 4  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )
2016, 18, 19syl2anc 411 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
21 mulclpi 7390 . . . 4  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
2221ad2ant2l 508 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
2320, 22jca 306 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( z  .N  u
)  +N  ( w  .N  v ) )  e.  N.  /\  (
w  .N  u )  e.  N. ) )
24 simp1l 1023 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
25 simp2r 1026 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
26 simp3r 1028 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
2725, 26, 21syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
28 mulclpi 7390 . . . . 5  |-  ( ( x  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( x  .N  (
w  .N  u ) )  e.  N. )
2924, 27, 28syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  ( w  .N  u
) )  e.  N. )
30 simp1r 1024 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
31 simp2l 1025 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
3231, 26, 15syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
33 mulclpi 7390 . . . . 5  |-  ( ( y  e.  N.  /\  ( z  .N  u
)  e.  N. )  ->  ( y  .N  (
z  .N  u ) )  e.  N. )
3430, 32, 33syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( z  .N  u
) )  e.  N. )
35 simp3l 1027 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
3625, 35, 17syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
37 mulclpi 7390 . . . . 5  |-  ( ( y  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( y  .N  (
w  .N  v ) )  e.  N. )
3830, 36, 37syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( w  .N  v
) )  e.  N. )
39 addasspig 7392 . . . 4  |-  ( ( ( x  .N  (
w  .N  u ) )  e.  N.  /\  ( y  .N  (
z  .N  u ) )  e.  N.  /\  ( y  .N  (
w  .N  v ) )  e.  N. )  ->  ( ( ( x  .N  ( w  .N  u ) )  +N  ( y  .N  (
z  .N  u ) ) )  +N  (
y  .N  ( w  .N  v ) ) )  =  ( ( x  .N  ( w  .N  u ) )  +N  ( ( y  .N  ( z  .N  u ) )  +N  ( y  .N  (
w  .N  v ) ) ) ) )
4029, 34, 38, 39syl3anc 1249 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( x  .N  (
w  .N  u ) )  +N  ( y  .N  ( z  .N  u ) ) )  +N  ( y  .N  ( w  .N  v
) ) )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
( y  .N  (
z  .N  u ) )  +N  ( y  .N  ( w  .N  v ) ) ) ) )
41 mulcompig 7393 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
4241adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
43 distrpig 7395 . . . . . . . 8  |-  ( ( h  e.  N.  /\  f  e.  N.  /\  g  e.  N. )  ->  (
h  .N  ( f  +N  g ) )  =  ( ( h  .N  f )  +N  ( h  .N  g
) ) )
44433coml 1212 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  ( f  +N  g ) )  =  ( ( h  .N  f )  +N  ( h  .N  g
) ) )
45 addclpi 7389 . . . . . . . . . 10  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  +N  g
)  e.  N. )
46 mulcompig 7393 . . . . . . . . . 10  |-  ( ( h  e.  N.  /\  ( f  +N  g
)  e.  N. )  ->  ( h  .N  (
f  +N  g ) )  =  ( ( f  +N  g )  .N  h ) )
4745, 46sylan2 286 . . . . . . . . 9  |-  ( ( h  e.  N.  /\  ( f  e.  N.  /\  g  e.  N. )
)  ->  ( h  .N  ( f  +N  g
) )  =  ( ( f  +N  g
)  .N  h ) )
4847ancoms 268 . . . . . . . 8  |-  ( ( ( f  e.  N.  /\  g  e.  N. )  /\  h  e.  N. )  ->  ( h  .N  ( f  +N  g
) )  =  ( ( f  +N  g
)  .N  h ) )
49483impa 1196 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  ( f  +N  g ) )  =  ( ( f  +N  g )  .N  h ) )
50 mulcompig 7393 . . . . . . . . . 10  |-  ( ( h  e.  N.  /\  f  e.  N. )  ->  ( h  .N  f
)  =  ( f  .N  h ) )
5150ancoms 268 . . . . . . . . 9  |-  ( ( f  e.  N.  /\  h  e.  N. )  ->  ( h  .N  f
)  =  ( f  .N  h ) )
52513adant2 1018 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  f )  =  ( f  .N  h ) )
53 mulcompig 7393 . . . . . . . . . 10  |-  ( ( h  e.  N.  /\  g  e.  N. )  ->  ( h  .N  g
)  =  ( g  .N  h ) )
5453ancoms 268 . . . . . . . . 9  |-  ( ( g  e.  N.  /\  h  e.  N. )  ->  ( h  .N  g
)  =  ( g  .N  h ) )
55543adant1 1017 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  g )  =  ( g  .N  h ) )
5652, 55oveq12d 5937 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( h  .N  f
)  +N  ( h  .N  g ) )  =  ( ( f  .N  h )  +N  ( g  .N  h
) ) )
5744, 49, 563eqtr3d 2234 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  +N  g
)  .N  h )  =  ( ( f  .N  h )  +N  ( g  .N  h
) ) )
5857adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  +N  g
)  .N  h )  =  ( ( f  .N  h )  +N  ( g  .N  h
) ) )
59 mulasspig 7394 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
6059adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
61 mulclpi 7390 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
6261adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
6342, 58, 60, 62, 24, 30, 25, 31, 26caovdilemd 6112 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( x  .N  w
)  +N  ( y  .N  z ) )  .N  u )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
y  .N  ( z  .N  u ) ) ) )
64 mulasspig 7394 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  ->  (
( y  .N  w
)  .N  v )  =  ( y  .N  ( w  .N  v
) ) )
65643adant1l 1232 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  w  e.  N.  /\  v  e.  N. )  ->  ( ( y  .N  w )  .N  v
)  =  ( y  .N  ( w  .N  v ) ) )
66653adant2l 1234 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  v  e.  N. )  ->  ( ( y  .N  w )  .N  v )  =  ( y  .N  ( w  .N  v ) ) )
67663adant3r 1237 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
y  .N  w )  .N  v )  =  ( y  .N  (
w  .N  v ) ) )
6863, 67oveq12d 5937 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( ( x  .N  w )  +N  (
y  .N  z ) )  .N  u )  +N  ( ( y  .N  w )  .N  v ) )  =  ( ( ( x  .N  ( w  .N  u ) )  +N  ( y  .N  (
z  .N  u ) ) )  +N  (
y  .N  ( w  .N  v ) ) ) )
69 distrpig 7395 . . . . 5  |-  ( ( y  e.  N.  /\  ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( y  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  =  ( ( y  .N  ( z  .N  u ) )  +N  ( y  .N  ( w  .N  v
) ) ) )
7030, 32, 36, 69syl3anc 1249 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) )  =  ( ( y  .N  (
z  .N  u ) )  +N  ( y  .N  ( w  .N  v ) ) ) )
7170oveq2d 5935 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  ( w  .N  u ) )  +N  ( y  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) ) )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
( y  .N  (
z  .N  u ) )  +N  ( y  .N  ( w  .N  v ) ) ) ) )
7240, 68, 713eqtr4d 2236 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( ( x  .N  w )  +N  (
y  .N  z ) )  .N  u )  +N  ( ( y  .N  w )  .N  v ) )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
y  .N  ( ( z  .N  u )  +N  ( w  .N  v ) ) ) ) )
73 mulasspig 7394 . . . . 5  |-  ( ( y  e.  N.  /\  w  e.  N.  /\  u  e.  N. )  ->  (
( y  .N  w
)  .N  u )  =  ( y  .N  ( w  .N  u
) ) )
74733adant1l 1232 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  w  e.  N.  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u
)  =  ( y  .N  ( w  .N  u ) ) )
75743adant2l 1234 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u )  =  ( y  .N  ( w  .N  u ) ) )
76753adant3l 1236 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
y  .N  w )  .N  u )  =  ( y  .N  (
w  .N  u ) ) )
771, 2, 3, 4, 5, 14, 23, 72, 76ecoviass 6701 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +Q  B
)  +Q  C )  =  ( A  +Q  ( B  +Q  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5919   N.cnpi 7334    +N cpli 7335    .N cmi 7336    ~Q ceq 7341   Q.cnq 7342    +Q cplq 7344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-plpq 7406  df-enq 7409  df-nqqs 7410  df-plqqs 7411
This theorem is referenced by:  ltaddnq  7469  addlocprlemeqgt  7594  addassprg  7641  ltexprlemloc  7669  ltexprlemrl  7672  ltexprlemru  7674  addcanprleml  7676  addcanprlemu  7677  cauappcvgprlemdisj  7713  cauappcvgprlemloc  7714  cauappcvgprlemladdfl  7717  cauappcvgprlemladdru  7718  cauappcvgprlemladdrl  7719  cauappcvgprlem1  7721  caucvgprlemloc  7737  caucvgprlemladdrl  7740  caucvgprprlemloccalc  7746
  Copyright terms: Public domain W3C validator