| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassnqg | Unicode version | ||
| Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| addassnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7481 |
. 2
| |
| 2 | addpipqqs 7503 |
. 2
| |
| 3 | addpipqqs 7503 |
. 2
| |
| 4 | addpipqqs 7503 |
. 2
| |
| 5 | addpipqqs 7503 |
. 2
| |
| 6 | mulclpi 7461 |
. . . . 5
| |
| 7 | 6 | ad2ant2rl 511 |
. . . 4
|
| 8 | mulclpi 7461 |
. . . . 5
| |
| 9 | 8 | ad2ant2lr 510 |
. . . 4
|
| 10 | addclpi 7460 |
. . . 4
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . 3
|
| 12 | mulclpi 7461 |
. . . 4
| |
| 13 | 12 | ad2ant2l 508 |
. . 3
|
| 14 | 11, 13 | jca 306 |
. 2
|
| 15 | mulclpi 7461 |
. . . . 5
| |
| 16 | 15 | ad2ant2rl 511 |
. . . 4
|
| 17 | mulclpi 7461 |
. . . . 5
| |
| 18 | 17 | ad2ant2lr 510 |
. . . 4
|
| 19 | addclpi 7460 |
. . . 4
| |
| 20 | 16, 18, 19 | syl2anc 411 |
. . 3
|
| 21 | mulclpi 7461 |
. . . 4
| |
| 22 | 21 | ad2ant2l 508 |
. . 3
|
| 23 | 20, 22 | jca 306 |
. 2
|
| 24 | simp1l 1024 |
. . . . 5
| |
| 25 | simp2r 1027 |
. . . . . 6
| |
| 26 | simp3r 1029 |
. . . . . 6
| |
| 27 | 25, 26, 21 | syl2anc 411 |
. . . . 5
|
| 28 | mulclpi 7461 |
. . . . 5
| |
| 29 | 24, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | simp1r 1025 |
. . . . 5
| |
| 31 | simp2l 1026 |
. . . . . 6
| |
| 32 | 31, 26, 15 | syl2anc 411 |
. . . . 5
|
| 33 | mulclpi 7461 |
. . . . 5
| |
| 34 | 30, 32, 33 | syl2anc 411 |
. . . 4
|
| 35 | simp3l 1028 |
. . . . . 6
| |
| 36 | 25, 35, 17 | syl2anc 411 |
. . . . 5
|
| 37 | mulclpi 7461 |
. . . . 5
| |
| 38 | 30, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | addasspig 7463 |
. . . 4
| |
| 40 | 29, 34, 38, 39 | syl3anc 1250 |
. . 3
|
| 41 | mulcompig 7464 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | distrpig 7466 |
. . . . . . . 8
| |
| 44 | 43 | 3coml 1213 |
. . . . . . 7
|
| 45 | addclpi 7460 |
. . . . . . . . . 10
| |
| 46 | mulcompig 7464 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | sylan2 286 |
. . . . . . . . 9
|
| 48 | 47 | ancoms 268 |
. . . . . . . 8
|
| 49 | 48 | 3impa 1197 |
. . . . . . 7
|
| 50 | mulcompig 7464 |
. . . . . . . . . 10
| |
| 51 | 50 | ancoms 268 |
. . . . . . . . 9
|
| 52 | 51 | 3adant2 1019 |
. . . . . . . 8
|
| 53 | mulcompig 7464 |
. . . . . . . . . 10
| |
| 54 | 53 | ancoms 268 |
. . . . . . . . 9
|
| 55 | 54 | 3adant1 1018 |
. . . . . . . 8
|
| 56 | 52, 55 | oveq12d 5975 |
. . . . . . 7
|
| 57 | 44, 49, 56 | 3eqtr3d 2247 |
. . . . . 6
|
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | mulasspig 7465 |
. . . . . 6
| |
| 60 | 59 | adantl 277 |
. . . . 5
|
| 61 | mulclpi 7461 |
. . . . . 6
| |
| 62 | 61 | adantl 277 |
. . . . 5
|
| 63 | 42, 58, 60, 62, 24, 30, 25, 31, 26 | caovdilemd 6151 |
. . . 4
|
| 64 | mulasspig 7465 |
. . . . . . 7
| |
| 65 | 64 | 3adant1l 1233 |
. . . . . 6
|
| 66 | 65 | 3adant2l 1235 |
. . . . 5
|
| 67 | 66 | 3adant3r 1238 |
. . . 4
|
| 68 | 63, 67 | oveq12d 5975 |
. . 3
|
| 69 | distrpig 7466 |
. . . . 5
| |
| 70 | 30, 32, 36, 69 | syl3anc 1250 |
. . . 4
|
| 71 | 70 | oveq2d 5973 |
. . 3
|
| 72 | 40, 68, 71 | 3eqtr4d 2249 |
. 2
|
| 73 | mulasspig 7465 |
. . . . 5
| |
| 74 | 73 | 3adant1l 1233 |
. . . 4
|
| 75 | 74 | 3adant2l 1235 |
. . 3
|
| 76 | 75 | 3adant3l 1237 |
. 2
|
| 77 | 1, 2, 3, 4, 5, 14, 23, 72, 76 | ecoviass 6745 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-plpq 7477 df-enq 7480 df-nqqs 7481 df-plqqs 7482 |
| This theorem is referenced by: ltaddnq 7540 addlocprlemeqgt 7665 addassprg 7712 ltexprlemloc 7740 ltexprlemrl 7743 ltexprlemru 7745 addcanprleml 7747 addcanprlemu 7748 cauappcvgprlemdisj 7784 cauappcvgprlemloc 7785 cauappcvgprlemladdfl 7788 cauappcvgprlemladdru 7789 cauappcvgprlemladdrl 7790 cauappcvgprlem1 7792 caucvgprlemloc 7808 caucvgprlemladdrl 7811 caucvgprprlemloccalc 7817 |
| Copyright terms: Public domain | W3C validator |