Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addassnqg | Unicode version |
Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.) |
Ref | Expression |
---|---|
addassnqg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7289 | . 2 | |
2 | addpipqqs 7311 | . 2 | |
3 | addpipqqs 7311 | . 2 | |
4 | addpipqqs 7311 | . 2 | |
5 | addpipqqs 7311 | . 2 | |
6 | mulclpi 7269 | . . . . 5 | |
7 | 6 | ad2ant2rl 503 | . . . 4 |
8 | mulclpi 7269 | . . . . 5 | |
9 | 8 | ad2ant2lr 502 | . . . 4 |
10 | addclpi 7268 | . . . 4 | |
11 | 7, 9, 10 | syl2anc 409 | . . 3 |
12 | mulclpi 7269 | . . . 4 | |
13 | 12 | ad2ant2l 500 | . . 3 |
14 | 11, 13 | jca 304 | . 2 |
15 | mulclpi 7269 | . . . . 5 | |
16 | 15 | ad2ant2rl 503 | . . . 4 |
17 | mulclpi 7269 | . . . . 5 | |
18 | 17 | ad2ant2lr 502 | . . . 4 |
19 | addclpi 7268 | . . . 4 | |
20 | 16, 18, 19 | syl2anc 409 | . . 3 |
21 | mulclpi 7269 | . . . 4 | |
22 | 21 | ad2ant2l 500 | . . 3 |
23 | 20, 22 | jca 304 | . 2 |
24 | simp1l 1011 | . . . . 5 | |
25 | simp2r 1014 | . . . . . 6 | |
26 | simp3r 1016 | . . . . . 6 | |
27 | 25, 26, 21 | syl2anc 409 | . . . . 5 |
28 | mulclpi 7269 | . . . . 5 | |
29 | 24, 27, 28 | syl2anc 409 | . . . 4 |
30 | simp1r 1012 | . . . . 5 | |
31 | simp2l 1013 | . . . . . 6 | |
32 | 31, 26, 15 | syl2anc 409 | . . . . 5 |
33 | mulclpi 7269 | . . . . 5 | |
34 | 30, 32, 33 | syl2anc 409 | . . . 4 |
35 | simp3l 1015 | . . . . . 6 | |
36 | 25, 35, 17 | syl2anc 409 | . . . . 5 |
37 | mulclpi 7269 | . . . . 5 | |
38 | 30, 36, 37 | syl2anc 409 | . . . 4 |
39 | addasspig 7271 | . . . 4 | |
40 | 29, 34, 38, 39 | syl3anc 1228 | . . 3 |
41 | mulcompig 7272 | . . . . . 6 | |
42 | 41 | adantl 275 | . . . . 5 |
43 | distrpig 7274 | . . . . . . . 8 | |
44 | 43 | 3coml 1200 | . . . . . . 7 |
45 | addclpi 7268 | . . . . . . . . . 10 | |
46 | mulcompig 7272 | . . . . . . . . . 10 | |
47 | 45, 46 | sylan2 284 | . . . . . . . . 9 |
48 | 47 | ancoms 266 | . . . . . . . 8 |
49 | 48 | 3impa 1184 | . . . . . . 7 |
50 | mulcompig 7272 | . . . . . . . . . 10 | |
51 | 50 | ancoms 266 | . . . . . . . . 9 |
52 | 51 | 3adant2 1006 | . . . . . . . 8 |
53 | mulcompig 7272 | . . . . . . . . . 10 | |
54 | 53 | ancoms 266 | . . . . . . . . 9 |
55 | 54 | 3adant1 1005 | . . . . . . . 8 |
56 | 52, 55 | oveq12d 5860 | . . . . . . 7 |
57 | 44, 49, 56 | 3eqtr3d 2206 | . . . . . 6 |
58 | 57 | adantl 275 | . . . . 5 |
59 | mulasspig 7273 | . . . . . 6 | |
60 | 59 | adantl 275 | . . . . 5 |
61 | mulclpi 7269 | . . . . . 6 | |
62 | 61 | adantl 275 | . . . . 5 |
63 | 42, 58, 60, 62, 24, 30, 25, 31, 26 | caovdilemd 6033 | . . . 4 |
64 | mulasspig 7273 | . . . . . . 7 | |
65 | 64 | 3adant1l 1220 | . . . . . 6 |
66 | 65 | 3adant2l 1222 | . . . . 5 |
67 | 66 | 3adant3r 1225 | . . . 4 |
68 | 63, 67 | oveq12d 5860 | . . 3 |
69 | distrpig 7274 | . . . . 5 | |
70 | 30, 32, 36, 69 | syl3anc 1228 | . . . 4 |
71 | 70 | oveq2d 5858 | . . 3 |
72 | 40, 68, 71 | 3eqtr4d 2208 | . 2 |
73 | mulasspig 7273 | . . . . 5 | |
74 | 73 | 3adant1l 1220 | . . . 4 |
75 | 74 | 3adant2l 1222 | . . 3 |
76 | 75 | 3adant3l 1224 | . 2 |
77 | 1, 2, 3, 4, 5, 14, 23, 72, 76 | ecoviass 6611 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 (class class class)co 5842 cnpi 7213 cpli 7214 cmi 7215 ceq 7220 cnq 7221 cplq 7223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-plpq 7285 df-enq 7288 df-nqqs 7289 df-plqqs 7290 |
This theorem is referenced by: ltaddnq 7348 addlocprlemeqgt 7473 addassprg 7520 ltexprlemloc 7548 ltexprlemrl 7551 ltexprlemru 7553 addcanprleml 7555 addcanprlemu 7556 cauappcvgprlemdisj 7592 cauappcvgprlemloc 7593 cauappcvgprlemladdfl 7596 cauappcvgprlemladdru 7597 cauappcvgprlemladdrl 7598 cauappcvgprlem1 7600 caucvgprlemloc 7616 caucvgprlemladdrl 7619 caucvgprprlemloccalc 7625 |
Copyright terms: Public domain | W3C validator |