| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassnqg | Unicode version | ||
| Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| addassnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7432 |
. 2
| |
| 2 | addpipqqs 7454 |
. 2
| |
| 3 | addpipqqs 7454 |
. 2
| |
| 4 | addpipqqs 7454 |
. 2
| |
| 5 | addpipqqs 7454 |
. 2
| |
| 6 | mulclpi 7412 |
. . . . 5
| |
| 7 | 6 | ad2ant2rl 511 |
. . . 4
|
| 8 | mulclpi 7412 |
. . . . 5
| |
| 9 | 8 | ad2ant2lr 510 |
. . . 4
|
| 10 | addclpi 7411 |
. . . 4
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . 3
|
| 12 | mulclpi 7412 |
. . . 4
| |
| 13 | 12 | ad2ant2l 508 |
. . 3
|
| 14 | 11, 13 | jca 306 |
. 2
|
| 15 | mulclpi 7412 |
. . . . 5
| |
| 16 | 15 | ad2ant2rl 511 |
. . . 4
|
| 17 | mulclpi 7412 |
. . . . 5
| |
| 18 | 17 | ad2ant2lr 510 |
. . . 4
|
| 19 | addclpi 7411 |
. . . 4
| |
| 20 | 16, 18, 19 | syl2anc 411 |
. . 3
|
| 21 | mulclpi 7412 |
. . . 4
| |
| 22 | 21 | ad2ant2l 508 |
. . 3
|
| 23 | 20, 22 | jca 306 |
. 2
|
| 24 | simp1l 1023 |
. . . . 5
| |
| 25 | simp2r 1026 |
. . . . . 6
| |
| 26 | simp3r 1028 |
. . . . . 6
| |
| 27 | 25, 26, 21 | syl2anc 411 |
. . . . 5
|
| 28 | mulclpi 7412 |
. . . . 5
| |
| 29 | 24, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | simp1r 1024 |
. . . . 5
| |
| 31 | simp2l 1025 |
. . . . . 6
| |
| 32 | 31, 26, 15 | syl2anc 411 |
. . . . 5
|
| 33 | mulclpi 7412 |
. . . . 5
| |
| 34 | 30, 32, 33 | syl2anc 411 |
. . . 4
|
| 35 | simp3l 1027 |
. . . . . 6
| |
| 36 | 25, 35, 17 | syl2anc 411 |
. . . . 5
|
| 37 | mulclpi 7412 |
. . . . 5
| |
| 38 | 30, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | addasspig 7414 |
. . . 4
| |
| 40 | 29, 34, 38, 39 | syl3anc 1249 |
. . 3
|
| 41 | mulcompig 7415 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | distrpig 7417 |
. . . . . . . 8
| |
| 44 | 43 | 3coml 1212 |
. . . . . . 7
|
| 45 | addclpi 7411 |
. . . . . . . . . 10
| |
| 46 | mulcompig 7415 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | sylan2 286 |
. . . . . . . . 9
|
| 48 | 47 | ancoms 268 |
. . . . . . . 8
|
| 49 | 48 | 3impa 1196 |
. . . . . . 7
|
| 50 | mulcompig 7415 |
. . . . . . . . . 10
| |
| 51 | 50 | ancoms 268 |
. . . . . . . . 9
|
| 52 | 51 | 3adant2 1018 |
. . . . . . . 8
|
| 53 | mulcompig 7415 |
. . . . . . . . . 10
| |
| 54 | 53 | ancoms 268 |
. . . . . . . . 9
|
| 55 | 54 | 3adant1 1017 |
. . . . . . . 8
|
| 56 | 52, 55 | oveq12d 5943 |
. . . . . . 7
|
| 57 | 44, 49, 56 | 3eqtr3d 2237 |
. . . . . 6
|
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | mulasspig 7416 |
. . . . . 6
| |
| 60 | 59 | adantl 277 |
. . . . 5
|
| 61 | mulclpi 7412 |
. . . . . 6
| |
| 62 | 61 | adantl 277 |
. . . . 5
|
| 63 | 42, 58, 60, 62, 24, 30, 25, 31, 26 | caovdilemd 6119 |
. . . 4
|
| 64 | mulasspig 7416 |
. . . . . . 7
| |
| 65 | 64 | 3adant1l 1232 |
. . . . . 6
|
| 66 | 65 | 3adant2l 1234 |
. . . . 5
|
| 67 | 66 | 3adant3r 1237 |
. . . 4
|
| 68 | 63, 67 | oveq12d 5943 |
. . 3
|
| 69 | distrpig 7417 |
. . . . 5
| |
| 70 | 30, 32, 36, 69 | syl3anc 1249 |
. . . 4
|
| 71 | 70 | oveq2d 5941 |
. . 3
|
| 72 | 40, 68, 71 | 3eqtr4d 2239 |
. 2
|
| 73 | mulasspig 7416 |
. . . . 5
| |
| 74 | 73 | 3adant1l 1232 |
. . . 4
|
| 75 | 74 | 3adant2l 1234 |
. . 3
|
| 76 | 75 | 3adant3l 1236 |
. 2
|
| 77 | 1, 2, 3, 4, 5, 14, 23, 72, 76 | ecoviass 6713 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-plpq 7428 df-enq 7431 df-nqqs 7432 df-plqqs 7433 |
| This theorem is referenced by: ltaddnq 7491 addlocprlemeqgt 7616 addassprg 7663 ltexprlemloc 7691 ltexprlemrl 7694 ltexprlemru 7696 addcanprleml 7698 addcanprlemu 7699 cauappcvgprlemdisj 7735 cauappcvgprlemloc 7736 cauappcvgprlemladdfl 7739 cauappcvgprlemladdru 7740 cauappcvgprlemladdrl 7741 cauappcvgprlem1 7743 caucvgprlemloc 7759 caucvgprlemladdrl 7762 caucvgprprlemloccalc 7768 |
| Copyright terms: Public domain | W3C validator |