| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassnqg | Unicode version | ||
| Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| addassnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7460 |
. 2
| |
| 2 | addpipqqs 7482 |
. 2
| |
| 3 | addpipqqs 7482 |
. 2
| |
| 4 | addpipqqs 7482 |
. 2
| |
| 5 | addpipqqs 7482 |
. 2
| |
| 6 | mulclpi 7440 |
. . . . 5
| |
| 7 | 6 | ad2ant2rl 511 |
. . . 4
|
| 8 | mulclpi 7440 |
. . . . 5
| |
| 9 | 8 | ad2ant2lr 510 |
. . . 4
|
| 10 | addclpi 7439 |
. . . 4
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . 3
|
| 12 | mulclpi 7440 |
. . . 4
| |
| 13 | 12 | ad2ant2l 508 |
. . 3
|
| 14 | 11, 13 | jca 306 |
. 2
|
| 15 | mulclpi 7440 |
. . . . 5
| |
| 16 | 15 | ad2ant2rl 511 |
. . . 4
|
| 17 | mulclpi 7440 |
. . . . 5
| |
| 18 | 17 | ad2ant2lr 510 |
. . . 4
|
| 19 | addclpi 7439 |
. . . 4
| |
| 20 | 16, 18, 19 | syl2anc 411 |
. . 3
|
| 21 | mulclpi 7440 |
. . . 4
| |
| 22 | 21 | ad2ant2l 508 |
. . 3
|
| 23 | 20, 22 | jca 306 |
. 2
|
| 24 | simp1l 1023 |
. . . . 5
| |
| 25 | simp2r 1026 |
. . . . . 6
| |
| 26 | simp3r 1028 |
. . . . . 6
| |
| 27 | 25, 26, 21 | syl2anc 411 |
. . . . 5
|
| 28 | mulclpi 7440 |
. . . . 5
| |
| 29 | 24, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | simp1r 1024 |
. . . . 5
| |
| 31 | simp2l 1025 |
. . . . . 6
| |
| 32 | 31, 26, 15 | syl2anc 411 |
. . . . 5
|
| 33 | mulclpi 7440 |
. . . . 5
| |
| 34 | 30, 32, 33 | syl2anc 411 |
. . . 4
|
| 35 | simp3l 1027 |
. . . . . 6
| |
| 36 | 25, 35, 17 | syl2anc 411 |
. . . . 5
|
| 37 | mulclpi 7440 |
. . . . 5
| |
| 38 | 30, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | addasspig 7442 |
. . . 4
| |
| 40 | 29, 34, 38, 39 | syl3anc 1249 |
. . 3
|
| 41 | mulcompig 7443 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | distrpig 7445 |
. . . . . . . 8
| |
| 44 | 43 | 3coml 1212 |
. . . . . . 7
|
| 45 | addclpi 7439 |
. . . . . . . . . 10
| |
| 46 | mulcompig 7443 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | sylan2 286 |
. . . . . . . . 9
|
| 48 | 47 | ancoms 268 |
. . . . . . . 8
|
| 49 | 48 | 3impa 1196 |
. . . . . . 7
|
| 50 | mulcompig 7443 |
. . . . . . . . . 10
| |
| 51 | 50 | ancoms 268 |
. . . . . . . . 9
|
| 52 | 51 | 3adant2 1018 |
. . . . . . . 8
|
| 53 | mulcompig 7443 |
. . . . . . . . . 10
| |
| 54 | 53 | ancoms 268 |
. . . . . . . . 9
|
| 55 | 54 | 3adant1 1017 |
. . . . . . . 8
|
| 56 | 52, 55 | oveq12d 5961 |
. . . . . . 7
|
| 57 | 44, 49, 56 | 3eqtr3d 2245 |
. . . . . 6
|
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | mulasspig 7444 |
. . . . . 6
| |
| 60 | 59 | adantl 277 |
. . . . 5
|
| 61 | mulclpi 7440 |
. . . . . 6
| |
| 62 | 61 | adantl 277 |
. . . . 5
|
| 63 | 42, 58, 60, 62, 24, 30, 25, 31, 26 | caovdilemd 6137 |
. . . 4
|
| 64 | mulasspig 7444 |
. . . . . . 7
| |
| 65 | 64 | 3adant1l 1232 |
. . . . . 6
|
| 66 | 65 | 3adant2l 1234 |
. . . . 5
|
| 67 | 66 | 3adant3r 1237 |
. . . 4
|
| 68 | 63, 67 | oveq12d 5961 |
. . 3
|
| 69 | distrpig 7445 |
. . . . 5
| |
| 70 | 30, 32, 36, 69 | syl3anc 1249 |
. . . 4
|
| 71 | 70 | oveq2d 5959 |
. . 3
|
| 72 | 40, 68, 71 | 3eqtr4d 2247 |
. 2
|
| 73 | mulasspig 7444 |
. . . . 5
| |
| 74 | 73 | 3adant1l 1232 |
. . . 4
|
| 75 | 74 | 3adant2l 1234 |
. . 3
|
| 76 | 75 | 3adant3l 1236 |
. 2
|
| 77 | 1, 2, 3, 4, 5, 14, 23, 72, 76 | ecoviass 6731 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-plpq 7456 df-enq 7459 df-nqqs 7460 df-plqqs 7461 |
| This theorem is referenced by: ltaddnq 7519 addlocprlemeqgt 7644 addassprg 7691 ltexprlemloc 7719 ltexprlemrl 7722 ltexprlemru 7724 addcanprleml 7726 addcanprlemu 7727 cauappcvgprlemdisj 7763 cauappcvgprlemloc 7764 cauappcvgprlemladdfl 7767 cauappcvgprlemladdru 7768 cauappcvgprlemladdrl 7769 cauappcvgprlem1 7771 caucvgprlemloc 7787 caucvgprlemladdrl 7790 caucvgprprlemloccalc 7796 |
| Copyright terms: Public domain | W3C validator |