| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassnqg | Unicode version | ||
| Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| addassnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7531 |
. 2
| |
| 2 | addpipqqs 7553 |
. 2
| |
| 3 | addpipqqs 7553 |
. 2
| |
| 4 | addpipqqs 7553 |
. 2
| |
| 5 | addpipqqs 7553 |
. 2
| |
| 6 | mulclpi 7511 |
. . . . 5
| |
| 7 | 6 | ad2ant2rl 511 |
. . . 4
|
| 8 | mulclpi 7511 |
. . . . 5
| |
| 9 | 8 | ad2ant2lr 510 |
. . . 4
|
| 10 | addclpi 7510 |
. . . 4
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . 3
|
| 12 | mulclpi 7511 |
. . . 4
| |
| 13 | 12 | ad2ant2l 508 |
. . 3
|
| 14 | 11, 13 | jca 306 |
. 2
|
| 15 | mulclpi 7511 |
. . . . 5
| |
| 16 | 15 | ad2ant2rl 511 |
. . . 4
|
| 17 | mulclpi 7511 |
. . . . 5
| |
| 18 | 17 | ad2ant2lr 510 |
. . . 4
|
| 19 | addclpi 7510 |
. . . 4
| |
| 20 | 16, 18, 19 | syl2anc 411 |
. . 3
|
| 21 | mulclpi 7511 |
. . . 4
| |
| 22 | 21 | ad2ant2l 508 |
. . 3
|
| 23 | 20, 22 | jca 306 |
. 2
|
| 24 | simp1l 1045 |
. . . . 5
| |
| 25 | simp2r 1048 |
. . . . . 6
| |
| 26 | simp3r 1050 |
. . . . . 6
| |
| 27 | 25, 26, 21 | syl2anc 411 |
. . . . 5
|
| 28 | mulclpi 7511 |
. . . . 5
| |
| 29 | 24, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | simp1r 1046 |
. . . . 5
| |
| 31 | simp2l 1047 |
. . . . . 6
| |
| 32 | 31, 26, 15 | syl2anc 411 |
. . . . 5
|
| 33 | mulclpi 7511 |
. . . . 5
| |
| 34 | 30, 32, 33 | syl2anc 411 |
. . . 4
|
| 35 | simp3l 1049 |
. . . . . 6
| |
| 36 | 25, 35, 17 | syl2anc 411 |
. . . . 5
|
| 37 | mulclpi 7511 |
. . . . 5
| |
| 38 | 30, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | addasspig 7513 |
. . . 4
| |
| 40 | 29, 34, 38, 39 | syl3anc 1271 |
. . 3
|
| 41 | mulcompig 7514 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | distrpig 7516 |
. . . . . . . 8
| |
| 44 | 43 | 3coml 1234 |
. . . . . . 7
|
| 45 | addclpi 7510 |
. . . . . . . . . 10
| |
| 46 | mulcompig 7514 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | sylan2 286 |
. . . . . . . . 9
|
| 48 | 47 | ancoms 268 |
. . . . . . . 8
|
| 49 | 48 | 3impa 1218 |
. . . . . . 7
|
| 50 | mulcompig 7514 |
. . . . . . . . . 10
| |
| 51 | 50 | ancoms 268 |
. . . . . . . . 9
|
| 52 | 51 | 3adant2 1040 |
. . . . . . . 8
|
| 53 | mulcompig 7514 |
. . . . . . . . . 10
| |
| 54 | 53 | ancoms 268 |
. . . . . . . . 9
|
| 55 | 54 | 3adant1 1039 |
. . . . . . . 8
|
| 56 | 52, 55 | oveq12d 6018 |
. . . . . . 7
|
| 57 | 44, 49, 56 | 3eqtr3d 2270 |
. . . . . 6
|
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | mulasspig 7515 |
. . . . . 6
| |
| 60 | 59 | adantl 277 |
. . . . 5
|
| 61 | mulclpi 7511 |
. . . . . 6
| |
| 62 | 61 | adantl 277 |
. . . . 5
|
| 63 | 42, 58, 60, 62, 24, 30, 25, 31, 26 | caovdilemd 6196 |
. . . 4
|
| 64 | mulasspig 7515 |
. . . . . . 7
| |
| 65 | 64 | 3adant1l 1254 |
. . . . . 6
|
| 66 | 65 | 3adant2l 1256 |
. . . . 5
|
| 67 | 66 | 3adant3r 1259 |
. . . 4
|
| 68 | 63, 67 | oveq12d 6018 |
. . 3
|
| 69 | distrpig 7516 |
. . . . 5
| |
| 70 | 30, 32, 36, 69 | syl3anc 1271 |
. . . 4
|
| 71 | 70 | oveq2d 6016 |
. . 3
|
| 72 | 40, 68, 71 | 3eqtr4d 2272 |
. 2
|
| 73 | mulasspig 7515 |
. . . . 5
| |
| 74 | 73 | 3adant1l 1254 |
. . . 4
|
| 75 | 74 | 3adant2l 1256 |
. . 3
|
| 76 | 75 | 3adant3l 1258 |
. 2
|
| 77 | 1, 2, 3, 4, 5, 14, 23, 72, 76 | ecoviass 6790 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-plpq 7527 df-enq 7530 df-nqqs 7531 df-plqqs 7532 |
| This theorem is referenced by: ltaddnq 7590 addlocprlemeqgt 7715 addassprg 7762 ltexprlemloc 7790 ltexprlemrl 7793 ltexprlemru 7795 addcanprleml 7797 addcanprlemu 7798 cauappcvgprlemdisj 7834 cauappcvgprlemloc 7835 cauappcvgprlemladdfl 7838 cauappcvgprlemladdru 7839 cauappcvgprlemladdrl 7840 cauappcvgprlem1 7842 caucvgprlemloc 7858 caucvgprlemladdrl 7861 caucvgprprlemloccalc 7867 |
| Copyright terms: Public domain | W3C validator |