ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnqg Unicode version

Theorem addassnqg 7466
Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
Assertion
Ref Expression
addassnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +Q  B
)  +Q  C )  =  ( A  +Q  ( B  +Q  C
) ) )

Proof of Theorem addassnqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7432 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 addpipqqs 7454 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  )
3 addpipqqs 7454 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
4 addpipqqs 7454 . 2  |-  ( ( ( ( ( x  .N  w )  +N  ( y  .N  z
) )  e.  N.  /\  ( y  .N  w
)  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( ( x  .N  w )  +N  (
y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( ( ( x  .N  w )  +N  ( y  .N  z
) )  .N  u
)  +N  ( ( y  .N  w )  .N  v ) ) ,  ( ( y  .N  w )  .N  u ) >. ]  ~Q  )
5 addpipqqs 7454 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( ( z  .N  u )  +N  ( w  .N  v
) )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. ( ( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )  =  [ <. (
( x  .N  (
w  .N  u ) )  +N  ( y  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) ) ) ,  ( y  .N  ( w  .N  u
) ) >. ]  ~Q  )
6 mulclpi 7412 . . . . 5  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
76ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
8 mulclpi 7412 . . . . 5  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
98ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
10 addclpi 7411 . . . 4  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  ->  ( ( x  .N  w )  +N  (
y  .N  z ) )  e.  N. )
117, 9, 10syl2anc 411 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  e. 
N. )
12 mulclpi 7412 . . . 4  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
1312ad2ant2l 508 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  e.  N. )
1411, 13jca 306 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
( x  .N  w
)  +N  ( y  .N  z ) )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
15 mulclpi 7412 . . . . 5  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  e.  N. )
1615ad2ant2rl 511 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
17 mulclpi 7412 . . . . 5  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  e.  N. )
1817ad2ant2lr 510 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
19 addclpi 7411 . . . 4  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )
2016, 18, 19syl2anc 411 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
21 mulclpi 7412 . . . 4  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
2221ad2ant2l 508 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
2320, 22jca 306 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( z  .N  u
)  +N  ( w  .N  v ) )  e.  N.  /\  (
w  .N  u )  e.  N. ) )
24 simp1l 1023 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
25 simp2r 1026 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
26 simp3r 1028 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
2725, 26, 21syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
28 mulclpi 7412 . . . . 5  |-  ( ( x  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( x  .N  (
w  .N  u ) )  e.  N. )
2924, 27, 28syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  ( w  .N  u
) )  e.  N. )
30 simp1r 1024 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
31 simp2l 1025 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
3231, 26, 15syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
33 mulclpi 7412 . . . . 5  |-  ( ( y  e.  N.  /\  ( z  .N  u
)  e.  N. )  ->  ( y  .N  (
z  .N  u ) )  e.  N. )
3430, 32, 33syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( z  .N  u
) )  e.  N. )
35 simp3l 1027 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
3625, 35, 17syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
37 mulclpi 7412 . . . . 5  |-  ( ( y  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( y  .N  (
w  .N  v ) )  e.  N. )
3830, 36, 37syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( w  .N  v
) )  e.  N. )
39 addasspig 7414 . . . 4  |-  ( ( ( x  .N  (
w  .N  u ) )  e.  N.  /\  ( y  .N  (
z  .N  u ) )  e.  N.  /\  ( y  .N  (
w  .N  v ) )  e.  N. )  ->  ( ( ( x  .N  ( w  .N  u ) )  +N  ( y  .N  (
z  .N  u ) ) )  +N  (
y  .N  ( w  .N  v ) ) )  =  ( ( x  .N  ( w  .N  u ) )  +N  ( ( y  .N  ( z  .N  u ) )  +N  ( y  .N  (
w  .N  v ) ) ) ) )
4029, 34, 38, 39syl3anc 1249 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( x  .N  (
w  .N  u ) )  +N  ( y  .N  ( z  .N  u ) ) )  +N  ( y  .N  ( w  .N  v
) ) )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
( y  .N  (
z  .N  u ) )  +N  ( y  .N  ( w  .N  v ) ) ) ) )
41 mulcompig 7415 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
4241adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
43 distrpig 7417 . . . . . . . 8  |-  ( ( h  e.  N.  /\  f  e.  N.  /\  g  e.  N. )  ->  (
h  .N  ( f  +N  g ) )  =  ( ( h  .N  f )  +N  ( h  .N  g
) ) )
44433coml 1212 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  ( f  +N  g ) )  =  ( ( h  .N  f )  +N  ( h  .N  g
) ) )
45 addclpi 7411 . . . . . . . . . 10  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  +N  g
)  e.  N. )
46 mulcompig 7415 . . . . . . . . . 10  |-  ( ( h  e.  N.  /\  ( f  +N  g
)  e.  N. )  ->  ( h  .N  (
f  +N  g ) )  =  ( ( f  +N  g )  .N  h ) )
4745, 46sylan2 286 . . . . . . . . 9  |-  ( ( h  e.  N.  /\  ( f  e.  N.  /\  g  e.  N. )
)  ->  ( h  .N  ( f  +N  g
) )  =  ( ( f  +N  g
)  .N  h ) )
4847ancoms 268 . . . . . . . 8  |-  ( ( ( f  e.  N.  /\  g  e.  N. )  /\  h  e.  N. )  ->  ( h  .N  ( f  +N  g
) )  =  ( ( f  +N  g
)  .N  h ) )
49483impa 1196 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  ( f  +N  g ) )  =  ( ( f  +N  g )  .N  h ) )
50 mulcompig 7415 . . . . . . . . . 10  |-  ( ( h  e.  N.  /\  f  e.  N. )  ->  ( h  .N  f
)  =  ( f  .N  h ) )
5150ancoms 268 . . . . . . . . 9  |-  ( ( f  e.  N.  /\  h  e.  N. )  ->  ( h  .N  f
)  =  ( f  .N  h ) )
52513adant2 1018 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  f )  =  ( f  .N  h ) )
53 mulcompig 7415 . . . . . . . . . 10  |-  ( ( h  e.  N.  /\  g  e.  N. )  ->  ( h  .N  g
)  =  ( g  .N  h ) )
5453ancoms 268 . . . . . . . . 9  |-  ( ( g  e.  N.  /\  h  e.  N. )  ->  ( h  .N  g
)  =  ( g  .N  h ) )
55543adant1 1017 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
h  .N  g )  =  ( g  .N  h ) )
5652, 55oveq12d 5943 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( h  .N  f
)  +N  ( h  .N  g ) )  =  ( ( f  .N  h )  +N  ( g  .N  h
) ) )
5744, 49, 563eqtr3d 2237 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  +N  g
)  .N  h )  =  ( ( f  .N  h )  +N  ( g  .N  h
) ) )
5857adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  +N  g
)  .N  h )  =  ( ( f  .N  h )  +N  ( g  .N  h
) ) )
59 mulasspig 7416 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
6059adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
61 mulclpi 7412 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
6261adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
6342, 58, 60, 62, 24, 30, 25, 31, 26caovdilemd 6119 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( x  .N  w
)  +N  ( y  .N  z ) )  .N  u )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
y  .N  ( z  .N  u ) ) ) )
64 mulasspig 7416 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  ->  (
( y  .N  w
)  .N  v )  =  ( y  .N  ( w  .N  v
) ) )
65643adant1l 1232 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  w  e.  N.  /\  v  e.  N. )  ->  ( ( y  .N  w )  .N  v
)  =  ( y  .N  ( w  .N  v ) ) )
66653adant2l 1234 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  v  e.  N. )  ->  ( ( y  .N  w )  .N  v )  =  ( y  .N  ( w  .N  v ) ) )
67663adant3r 1237 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
y  .N  w )  .N  v )  =  ( y  .N  (
w  .N  v ) ) )
6863, 67oveq12d 5943 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( ( x  .N  w )  +N  (
y  .N  z ) )  .N  u )  +N  ( ( y  .N  w )  .N  v ) )  =  ( ( ( x  .N  ( w  .N  u ) )  +N  ( y  .N  (
z  .N  u ) ) )  +N  (
y  .N  ( w  .N  v ) ) ) )
69 distrpig 7417 . . . . 5  |-  ( ( y  e.  N.  /\  ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( y  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  =  ( ( y  .N  ( z  .N  u ) )  +N  ( y  .N  ( w  .N  v
) ) ) )
7030, 32, 36, 69syl3anc 1249 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) )  =  ( ( y  .N  (
z  .N  u ) )  +N  ( y  .N  ( w  .N  v ) ) ) )
7170oveq2d 5941 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  ( w  .N  u ) )  +N  ( y  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) ) )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
( y  .N  (
z  .N  u ) )  +N  ( y  .N  ( w  .N  v ) ) ) ) )
7240, 68, 713eqtr4d 2239 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( ( x  .N  w )  +N  (
y  .N  z ) )  .N  u )  +N  ( ( y  .N  w )  .N  v ) )  =  ( ( x  .N  ( w  .N  u
) )  +N  (
y  .N  ( ( z  .N  u )  +N  ( w  .N  v ) ) ) ) )
73 mulasspig 7416 . . . . 5  |-  ( ( y  e.  N.  /\  w  e.  N.  /\  u  e.  N. )  ->  (
( y  .N  w
)  .N  u )  =  ( y  .N  ( w  .N  u
) ) )
74733adant1l 1232 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  w  e.  N.  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u
)  =  ( y  .N  ( w  .N  u ) ) )
75743adant2l 1234 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  u  e.  N. )  ->  ( ( y  .N  w )  .N  u )  =  ( y  .N  ( w  .N  u ) ) )
76753adant3l 1236 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
y  .N  w )  .N  u )  =  ( y  .N  (
w  .N  u ) ) )
771, 2, 3, 4, 5, 14, 23, 72, 76ecoviass 6713 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  +Q  B
)  +Q  C )  =  ( A  +Q  ( B  +Q  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5925   N.cnpi 7356    +N cpli 7357    .N cmi 7358    ~Q ceq 7363   Q.cnq 7364    +Q cplq 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-plpq 7428  df-enq 7431  df-nqqs 7432  df-plqqs 7433
This theorem is referenced by:  ltaddnq  7491  addlocprlemeqgt  7616  addassprg  7663  ltexprlemloc  7691  ltexprlemrl  7694  ltexprlemru  7696  addcanprleml  7698  addcanprlemu  7699  cauappcvgprlemdisj  7735  cauappcvgprlemloc  7736  cauappcvgprlemladdfl  7739  cauappcvgprlemladdru  7740  cauappcvgprlemladdrl  7741  cauappcvgprlem1  7743  caucvgprlemloc  7759  caucvgprlemladdrl  7762  caucvgprprlemloccalc  7768
  Copyright terms: Public domain W3C validator